{"title":"论容量强型不等式及相关容量估计","authors":"Keng Hao Ooi, N. Phuc","doi":"10.4171/rmi/1285","DOIUrl":null,"url":null,"abstract":"We establish a capacitary strong type inequality which resolves a special case of a conjecture by David R. Adams. As a consequence, we obtain several equivalent norms for Choquet integrals associated to Bessel or Riesz capacities. This enables us to obtain bounds for the Hardy-Littlewood maximal function in a sublinear setting.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On a capacitary strong type inequality and related capacitary estimates\",\"authors\":\"Keng Hao Ooi, N. Phuc\",\"doi\":\"10.4171/rmi/1285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a capacitary strong type inequality which resolves a special case of a conjecture by David R. Adams. As a consequence, we obtain several equivalent norms for Choquet integrals associated to Bessel or Riesz capacities. This enables us to obtain bounds for the Hardy-Littlewood maximal function in a sublinear setting.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rmi/1285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
我们建立了一个容强型不等式,它解决了David R. Adams猜想的一个特例。因此,我们得到了与Bessel或Riesz能力相关的Choquet积分的几个等价范数。这使我们得到了次线性环境下Hardy-Littlewood极大函数的界。
On a capacitary strong type inequality and related capacitary estimates
We establish a capacitary strong type inequality which resolves a special case of a conjecture by David R. Adams. As a consequence, we obtain several equivalent norms for Choquet integrals associated to Bessel or Riesz capacities. This enables us to obtain bounds for the Hardy-Littlewood maximal function in a sublinear setting.