耗散系统的复杂量子流体力学动力学不变量

D. Schuch, M. Bonilla-Licea
{"title":"耗散系统的复杂量子流体力学动力学不变量","authors":"D. Schuch, M. Bonilla-Licea","doi":"10.3390/dynamics3010002","DOIUrl":null,"url":null,"abstract":"For Hamiltonian systems with time-dependent potential, the Hamiltonian, and thus the energy, is no longer a constant of motion. However, for such systems as the parametric oscillator, i.e., an oscillator with time-dependent frequency ω(t), still, a dynamical invariant can be found that now has the dimension of action. The question, if such an invariant still exists after the addition of a dissipative friction force is analyzed for the classical as well as for the quantum mechanical case from different perspectives, particularly from that of a complex hydrodynamic formulation of quantum mechanics.","PeriodicalId":80276,"journal":{"name":"Dynamics (Pembroke, Ont.)","volume":"315 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical Invariant for Dissipative Systems via Complex Quantum Hydrodynamics\",\"authors\":\"D. Schuch, M. Bonilla-Licea\",\"doi\":\"10.3390/dynamics3010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For Hamiltonian systems with time-dependent potential, the Hamiltonian, and thus the energy, is no longer a constant of motion. However, for such systems as the parametric oscillator, i.e., an oscillator with time-dependent frequency ω(t), still, a dynamical invariant can be found that now has the dimension of action. The question, if such an invariant still exists after the addition of a dissipative friction force is analyzed for the classical as well as for the quantum mechanical case from different perspectives, particularly from that of a complex hydrodynamic formulation of quantum mechanics.\",\"PeriodicalId\":80276,\"journal\":{\"name\":\"Dynamics (Pembroke, Ont.)\",\"volume\":\"315 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics (Pembroke, Ont.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dynamics3010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics (Pembroke, Ont.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics3010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于具有随时间变化的势的哈密顿系统,哈密顿量,也就是能量,不再是运动常数。然而,对于像参数振子这样的系统,即频率随时间变化ω(t)的振子,仍然可以找到一个具有作用维数的动态不变量。从不同的角度,特别是从量子力学的复杂流体力学公式的角度,分析了在加入耗散摩擦力后,这种不变量是否仍然存在的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical Invariant for Dissipative Systems via Complex Quantum Hydrodynamics
For Hamiltonian systems with time-dependent potential, the Hamiltonian, and thus the energy, is no longer a constant of motion. However, for such systems as the parametric oscillator, i.e., an oscillator with time-dependent frequency ω(t), still, a dynamical invariant can be found that now has the dimension of action. The question, if such an invariant still exists after the addition of a dissipative friction force is analyzed for the classical as well as for the quantum mechanical case from different perspectives, particularly from that of a complex hydrodynamic formulation of quantum mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信