人β-葡萄糖醛酸酶抑制剂双吲哚甲烷衍生物的分子模拟与对接分析

M. T. Ibrahim, U. Muhammad
{"title":"人β-葡萄糖醛酸酶抑制剂双吲哚甲烷衍生物的分子模拟与对接分析","authors":"M. T. Ibrahim, U. Muhammad","doi":"10.4314/bajopas.v14i1.4","DOIUrl":null,"url":null,"abstract":"β-glucuronidase enzyme is present mostly in mammals’ tissues. β-glucuronidase is present in kidney, bile, serum, urine and spleen. In eukaryotic and prokaryotic organisms, it is important in the process of breaking down of β-glucuronide. It also helps in the neutralization of reactivity of some metabolites that are associated to many diseases. The most stable geometry of the dataset were obtained adopting DFT method at B3LYP/6-31G* level of theory. The model was developed using MLR analysis adopting GFA method. Molecular docking was also performed to portray the binding mode of these bis-indolymethanes derivatives in the binding pocket of their target receptor (human β-glucuronidase). The selected model was assessed and chosen based on its statistical fitness with R2trng=0.907233, R2adj=0.881465,  Qcv2=0.833795, and R2test=0.609841. And also, the significance and impart of each physicochemical parameters to the selected model were determine by their ME values. Molecular docking analysis revealed that amino acid such as ALA49, SER52, ASP53, PHE51, VAL96, LEU92, TYR188, TYR199 and PHE200 might be responsible for the most promised binding affinity of the reported docked ligands. The molecular docking results showed that the reported compounds were better than the standard β-glucuronidase inhibitor. The results of this findings paved way for designing novel β-lucuronidase inhibitors.","PeriodicalId":8734,"journal":{"name":"Bayero Journal of Pure and Applied Sciences","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular modeling and docking analysis of bis-indolymethanes derivatives as human β-glucuronidase enzyme inhibitors\",\"authors\":\"M. T. Ibrahim, U. Muhammad\",\"doi\":\"10.4314/bajopas.v14i1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"β-glucuronidase enzyme is present mostly in mammals’ tissues. β-glucuronidase is present in kidney, bile, serum, urine and spleen. In eukaryotic and prokaryotic organisms, it is important in the process of breaking down of β-glucuronide. It also helps in the neutralization of reactivity of some metabolites that are associated to many diseases. The most stable geometry of the dataset were obtained adopting DFT method at B3LYP/6-31G* level of theory. The model was developed using MLR analysis adopting GFA method. Molecular docking was also performed to portray the binding mode of these bis-indolymethanes derivatives in the binding pocket of their target receptor (human β-glucuronidase). The selected model was assessed and chosen based on its statistical fitness with R2trng=0.907233, R2adj=0.881465,  Qcv2=0.833795, and R2test=0.609841. And also, the significance and impart of each physicochemical parameters to the selected model were determine by their ME values. Molecular docking analysis revealed that amino acid such as ALA49, SER52, ASP53, PHE51, VAL96, LEU92, TYR188, TYR199 and PHE200 might be responsible for the most promised binding affinity of the reported docked ligands. The molecular docking results showed that the reported compounds were better than the standard β-glucuronidase inhibitor. The results of this findings paved way for designing novel β-lucuronidase inhibitors.\",\"PeriodicalId\":8734,\"journal\":{\"name\":\"Bayero Journal of Pure and Applied Sciences\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayero Journal of Pure and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/bajopas.v14i1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayero Journal of Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/bajopas.v14i1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

β-葡萄糖醛酸酶主要存在于哺乳动物的组织中。β-葡萄糖醛酸酶存在于肾脏、胆汁、血清、尿液和脾脏中。在真核生物和原核生物中,它在β-葡糖苷的分解过程中起着重要作用。它还有助于中和一些与许多疾病有关的代谢物的反应性。采用B3LYP/6-31G*理论水平的DFT方法获得了数据集最稳定的几何形状。采用GFA方法,利用MLR分析建立模型。分子对接也描绘了这些双吲哚甲烷衍生物在其靶受体(人β-葡萄糖醛酸酶)结合袋中的结合模式。根据模型的统计适合度进行评估和选择,R2trng=0.907233, R2adj=0.881465, Qcv2=0.833795, R2test=0.609841。并通过各理化参数的ME值来确定其对所选模型的意义和赋予。分子对接分析表明,所报道的对接配体中最有希望结合亲和力的氨基酸可能是ALA49、SER52、ASP53、PHE51、VAL96、LEU92、TYR188、TYR199和PHE200。分子对接结果表明,所报道的化合物优于标准的β-葡萄糖醛酸酶抑制剂。这一发现为设计新型β-lucuronidase抑制剂铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular modeling and docking analysis of bis-indolymethanes derivatives as human β-glucuronidase enzyme inhibitors
β-glucuronidase enzyme is present mostly in mammals’ tissues. β-glucuronidase is present in kidney, bile, serum, urine and spleen. In eukaryotic and prokaryotic organisms, it is important in the process of breaking down of β-glucuronide. It also helps in the neutralization of reactivity of some metabolites that are associated to many diseases. The most stable geometry of the dataset were obtained adopting DFT method at B3LYP/6-31G* level of theory. The model was developed using MLR analysis adopting GFA method. Molecular docking was also performed to portray the binding mode of these bis-indolymethanes derivatives in the binding pocket of their target receptor (human β-glucuronidase). The selected model was assessed and chosen based on its statistical fitness with R2trng=0.907233, R2adj=0.881465,  Qcv2=0.833795, and R2test=0.609841. And also, the significance and impart of each physicochemical parameters to the selected model were determine by their ME values. Molecular docking analysis revealed that amino acid such as ALA49, SER52, ASP53, PHE51, VAL96, LEU92, TYR188, TYR199 and PHE200 might be responsible for the most promised binding affinity of the reported docked ligands. The molecular docking results showed that the reported compounds were better than the standard β-glucuronidase inhibitor. The results of this findings paved way for designing novel β-lucuronidase inhibitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信