瓦瑟斯坦空间的几何研究:欧几里得空间

IF 1.2 2区 数学 Q1 MATHEMATICS
Benoît R. Kloeckner
{"title":"瓦瑟斯坦空间的几何研究:欧几里得空间","authors":"Benoît R. Kloeckner","doi":"10.2422/2036-2145.2010.2.03","DOIUrl":null,"url":null,"abstract":"We study the Wasserstein space (with quadratic cost) of Euclidean spaces as an intrinsic metric space. In particular we compute their isometry groups. Surprisingly, in the case of the line, there exists a (unique) ``exotic'' isometric flow. This contrasts with the case of higher-dimensional Euclidean spaces, where all isometries of the Wasserstein space preserve the shape of measures. We also study the curvature and various ranks of these spaces.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"27 1","pages":"297-323"},"PeriodicalIF":1.2000,"publicationDate":"2008-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"A geometric study of Wasserstein spaces: Euclidean spaces\",\"authors\":\"Benoît R. Kloeckner\",\"doi\":\"10.2422/2036-2145.2010.2.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Wasserstein space (with quadratic cost) of Euclidean spaces as an intrinsic metric space. In particular we compute their isometry groups. Surprisingly, in the case of the line, there exists a (unique) ``exotic'' isometric flow. This contrasts with the case of higher-dimensional Euclidean spaces, where all isometries of the Wasserstein space preserve the shape of measures. We also study the curvature and various ranks of these spaces.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"27 1\",\"pages\":\"297-323\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2008-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.2010.2.03\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.2010.2.03","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 63

摘要

我们研究了欧几里得空间的Wasserstein空间(代价为二次元)作为一个内在度量空间。特别地,我们计算它们的等距群。令人惊讶的是,在这行中,存在一个(唯一的)“奇异的”等距流。这与高维欧几里得空间形成对比,在高维欧几里得空间中,沃瑟斯坦空间的所有等距都保持了度量的形状。我们还研究了这些空间的曲率和各种秩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometric study of Wasserstein spaces: Euclidean spaces
We study the Wasserstein space (with quadratic cost) of Euclidean spaces as an intrinsic metric space. In particular we compute their isometry groups. Surprisingly, in the case of the line, there exists a (unique) ``exotic'' isometric flow. This contrasts with the case of higher-dimensional Euclidean spaces, where all isometries of the Wasserstein space preserve the shape of measures. We also study the curvature and various ranks of these spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信