自动群的广义小消去表示

IF 0.1 Q4 MATHEMATICS
R. Gilman
{"title":"自动群的广义小消去表示","authors":"R. Gilman","doi":"10.1515/gcc-2014-0007","DOIUrl":null,"url":null,"abstract":"Abstract By a result of Gersten and Short finite presentations satisfying the usual non-metric small cancellation conditions present biautomatic groups. We show that in the case in which all pieces have length 1, a generalization of the C(3)-T(6) condition yields a larger collection of biautomatic groups.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1978 1","pages":"101 - 93"},"PeriodicalIF":0.1000,"publicationDate":"2014-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized small cancellation presentations for automatic groups\",\"authors\":\"R. Gilman\",\"doi\":\"10.1515/gcc-2014-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract By a result of Gersten and Short finite presentations satisfying the usual non-metric small cancellation conditions present biautomatic groups. We show that in the case in which all pieces have length 1, a generalization of the C(3)-T(6) condition yields a larger collection of biautomatic groups.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1978 1\",\"pages\":\"101 - 93\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2014-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2014-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2014-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要利用Gersten有限表示和Short有限表示的结果,满足通常的非度量小消去条件,得到双自动群。我们证明了在所有片段长度为1的情况下,C(3)-T(6)条件的推广产生了更大的双自动群集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized small cancellation presentations for automatic groups
Abstract By a result of Gersten and Short finite presentations satisfying the usual non-metric small cancellation conditions present biautomatic groups. We show that in the case in which all pieces have length 1, a generalization of the C(3)-T(6) condition yields a larger collection of biautomatic groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信