MEC对象识别系统的贝叶斯在线学习

Apostolos Galanopoulos, J. Ayala-Romero, G. Iosifidis, D. Leith
{"title":"MEC对象识别系统的贝叶斯在线学习","authors":"Apostolos Galanopoulos, J. Ayala-Romero, G. Iosifidis, D. Leith","doi":"10.1109/GLOBECOM42002.2020.9322146","DOIUrl":null,"url":null,"abstract":"Real-time object recognition is becoming an essen-tial part of many emerging services, such as augmented reality, which require accurate inference in a timely fashion with low delay. We consider an edge-assisted object recognition system that can be configured in ways that have diverse impacts on these key performance criteria. Our goal is to design an online algorithm that learns the optimal configuration of the system by observing the outcomes of configurations applied in the past. We leverage the structure of the problem and combine a Gaussian process with a multi-armed bandit framework to efficiently solve the problem at hand. Our results indicate that our solution makes better configuration choices compared to other bandit algorithms, resulting in lower regret.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"66 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bayesian Online Learning for MEC Object Recognition Systems\",\"authors\":\"Apostolos Galanopoulos, J. Ayala-Romero, G. Iosifidis, D. Leith\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time object recognition is becoming an essen-tial part of many emerging services, such as augmented reality, which require accurate inference in a timely fashion with low delay. We consider an edge-assisted object recognition system that can be configured in ways that have diverse impacts on these key performance criteria. Our goal is to design an online algorithm that learns the optimal configuration of the system by observing the outcomes of configurations applied in the past. We leverage the structure of the problem and combine a Gaussian process with a multi-armed bandit framework to efficiently solve the problem at hand. Our results indicate that our solution makes better configuration choices compared to other bandit algorithms, resulting in lower regret.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"66 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

实时目标识别正在成为许多新兴服务的重要组成部分,例如增强现实,这些服务需要以低延迟的方式及时准确地进行推理。我们考虑了一个边缘辅助对象识别系统,可以以对这些关键性能标准有不同影响的方式进行配置。我们的目标是设计一个在线算法,通过观察过去应用的配置结果来学习系统的最佳配置。我们利用问题的结构,并将高斯过程与多臂强盗框架相结合,以有效地解决手头的问题。我们的结果表明,与其他强盗算法相比,我们的解决方案可以做出更好的配置选择,从而降低遗憾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Online Learning for MEC Object Recognition Systems
Real-time object recognition is becoming an essen-tial part of many emerging services, such as augmented reality, which require accurate inference in a timely fashion with low delay. We consider an edge-assisted object recognition system that can be configured in ways that have diverse impacts on these key performance criteria. Our goal is to design an online algorithm that learns the optimal configuration of the system by observing the outcomes of configurations applied in the past. We leverage the structure of the problem and combine a Gaussian process with a multi-armed bandit framework to efficiently solve the problem at hand. Our results indicate that our solution makes better configuration choices compared to other bandit algorithms, resulting in lower regret.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信