{"title":"pugyturtle模式抵抗比特翻转攻击","authors":"David A. August, Anne C. Smith","doi":"10.3390/cryptography7020025","DOIUrl":null,"url":null,"abstract":"Cryptosystems employing a synchronous binary-additive stream cipher are susceptible to a generic attack called ’bit-flipping’, in which the ciphertext is modified to decrypt into a fraudulent message. While authenticated encryption and message authentication codes can effectively negate this attack, encryption modes can also provide partial protection against bit-flipping. PudgyTurtle is a stream-cipher mode which uses keystream to encode (via an error-correcting code) and to encipher (via modulo-2 addition). Here, we describe the behavior of this mode during bit-flipping attacks and demonstrate how it creates uncertainty about the number, positions, and identities of decrypted bits that will be affected.","PeriodicalId":13186,"journal":{"name":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","volume":"13 1 1","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PudgyTurtle Mode Resists Bit-Flipping Attacks\",\"authors\":\"David A. August, Anne C. Smith\",\"doi\":\"10.3390/cryptography7020025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cryptosystems employing a synchronous binary-additive stream cipher are susceptible to a generic attack called ’bit-flipping’, in which the ciphertext is modified to decrypt into a fraudulent message. While authenticated encryption and message authentication codes can effectively negate this attack, encryption modes can also provide partial protection against bit-flipping. PudgyTurtle is a stream-cipher mode which uses keystream to encode (via an error-correcting code) and to encipher (via modulo-2 addition). Here, we describe the behavior of this mode during bit-flipping attacks and demonstrate how it creates uncertainty about the number, positions, and identities of decrypted bits that will be affected.\",\"PeriodicalId\":13186,\"journal\":{\"name\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"volume\":\"13 1 1\",\"pages\":\"25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Trans. Cryptogr. Hardw. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryptography7020025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Trans. Cryptogr. Hardw. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryptography7020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cryptosystems employing a synchronous binary-additive stream cipher are susceptible to a generic attack called ’bit-flipping’, in which the ciphertext is modified to decrypt into a fraudulent message. While authenticated encryption and message authentication codes can effectively negate this attack, encryption modes can also provide partial protection against bit-flipping. PudgyTurtle is a stream-cipher mode which uses keystream to encode (via an error-correcting code) and to encipher (via modulo-2 addition). Here, we describe the behavior of this mode during bit-flipping attacks and demonstrate how it creates uncertainty about the number, positions, and identities of decrypted bits that will be affected.