Boij-Söderberg字典理想的分解

Pub Date : 2021-06-01 DOI:10.1216/jca.2021.13.209
Sema Güntürkün
{"title":"Boij-Söderberg字典理想的分解","authors":"Sema Güntürkün","doi":"10.1216/jca.2021.13.209","DOIUrl":null,"url":null,"abstract":"Boij–Soderberg theory describes the Betti diagrams of graded modules over a polynomial ring as a linear combination of pure diagrams with positive coefficients. In this paper, we focus on the Betti diagrams of lexicographic ideals. Mainly, we characterize the Boij–Soderberg decomposition of the Betti table of a lexicographic ideal in the polynomial ring with three variables, and show a nice connection between its Boij–Soderberg decomposition and the ones of other related lexicographic ideals.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boij–Söderberg decompositions of lexicographic ideals\",\"authors\":\"Sema Güntürkün\",\"doi\":\"10.1216/jca.2021.13.209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boij–Soderberg theory describes the Betti diagrams of graded modules over a polynomial ring as a linear combination of pure diagrams with positive coefficients. In this paper, we focus on the Betti diagrams of lexicographic ideals. Mainly, we characterize the Boij–Soderberg decomposition of the Betti table of a lexicographic ideal in the polynomial ring with three variables, and show a nice connection between its Boij–Soderberg decomposition and the ones of other related lexicographic ideals.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2021.13.209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2021.13.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Boij-Soderberg理论将多项式环上的梯度模的Betti图描述为带正系数的纯图的线性组合。本文主要讨论了词典理想的贝蒂图。主要刻画了三变量多项式环上字典理想Betti表的Boij-Soderberg分解,并证明了其Boij-Soderberg分解与其他相关字典理想的Boij-Soderberg分解之间的良好联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Boij–Söderberg decompositions of lexicographic ideals
Boij–Soderberg theory describes the Betti diagrams of graded modules over a polynomial ring as a linear combination of pure diagrams with positive coefficients. In this paper, we focus on the Betti diagrams of lexicographic ideals. Mainly, we characterize the Boij–Soderberg decomposition of the Betti table of a lexicographic ideal in the polynomial ring with three variables, and show a nice connection between its Boij–Soderberg decomposition and the ones of other related lexicographic ideals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信