与s型函数相关的双一元函数子类的fekete-szego问题

IF 0.5 Q3 MATHEMATICS
H. Orhan, G. Murugusundaramoorthy, M. Çağlar
{"title":"与s型函数相关的双一元函数子类的fekete-szego问题","authors":"H. Orhan, G. Murugusundaramoorthy, M. Çağlar","doi":"10.22190/fumi201022034o","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to introduce a new subclass of analytic and bi-univalent functions, in associated with sigmoid function and to investigate the upper bounds for |a2| and |a3|, where a2, a3 are the initial Taylor-Maclaurin coefficients. Further we obtain the Fekete-Szego inequalities for this subclass of the bi-univalent function class sigma. We also give several illustrative examples of the bi-univalent functionclass which we introduce here.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"3 12 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"THE FEKETE-SZEGO PROBLEMS FOR SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH SIGMOID FUNCTION\",\"authors\":\"H. Orhan, G. Murugusundaramoorthy, M. Çağlar\",\"doi\":\"10.22190/fumi201022034o\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to introduce a new subclass of analytic and bi-univalent functions, in associated with sigmoid function and to investigate the upper bounds for |a2| and |a3|, where a2, a3 are the initial Taylor-Maclaurin coefficients. Further we obtain the Fekete-Szego inequalities for this subclass of the bi-univalent function class sigma. We also give several illustrative examples of the bi-univalent functionclass which we introduce here.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"3 12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi201022034o\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi201022034o","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是引入与s型函数相关的解析函数和双一元函数的一个新子类,并研究了a2|和a3|的上界,其中a2、a3是初始泰勒-麦克劳林系数。进一步得到了双一元函数类的这一子类的Fekete-Szego不等式。我们还给出了几个我们在这里介绍的双单价函数类的说明性例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE FEKETE-SZEGO PROBLEMS FOR SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH SIGMOID FUNCTION
The purpose of this article is to introduce a new subclass of analytic and bi-univalent functions, in associated with sigmoid function and to investigate the upper bounds for |a2| and |a3|, where a2, a3 are the initial Taylor-Maclaurin coefficients. Further we obtain the Fekete-Szego inequalities for this subclass of the bi-univalent function class sigma. We also give several illustrative examples of the bi-univalent functionclass which we introduce here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信