{"title":"拓扑群的赝紧和预紧拓扑子半群","authors":"J. Hernández","doi":"10.15673/pigc.v16i2.2439","DOIUrl":null,"url":null,"abstract":"It is known that every pseudocompact topological group is precompact, we extend this result to a class of subsemigroup of topological groups. Then we use this results to prove that cancellative locally compact countably compact topological semigroups with open shifts are topological groups and to give a sufficient condition under which a locally compact monothetic topological semigroup is a compact topological group.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudocompact and precompact topological subsemigroups of topological groups\",\"authors\":\"J. Hernández\",\"doi\":\"10.15673/pigc.v16i2.2439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that every pseudocompact topological group is precompact, we extend this result to a class of subsemigroup of topological groups. Then we use this results to prove that cancellative locally compact countably compact topological semigroups with open shifts are topological groups and to give a sufficient condition under which a locally compact monothetic topological semigroup is a compact topological group.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/pigc.v16i2.2439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/pigc.v16i2.2439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Pseudocompact and precompact topological subsemigroups of topological groups
It is known that every pseudocompact topological group is precompact, we extend this result to a class of subsemigroup of topological groups. Then we use this results to prove that cancellative locally compact countably compact topological semigroups with open shifts are topological groups and to give a sufficient condition under which a locally compact monothetic topological semigroup is a compact topological group.