拓扑群的赝紧和预紧拓扑子半群

Q3 Mathematics
J. Hernández
{"title":"拓扑群的赝紧和预紧拓扑子半群","authors":"J. Hernández","doi":"10.15673/pigc.v16i2.2439","DOIUrl":null,"url":null,"abstract":"It is known that every pseudocompact topological group is precompact, we extend this result to a class of subsemigroup of topological groups. Then we use this results to prove that cancellative locally compact countably compact topological semigroups with open shifts are topological groups and to give a sufficient condition under which a locally compact monothetic topological semigroup is a compact topological group.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudocompact and precompact topological subsemigroups of topological groups\",\"authors\":\"J. Hernández\",\"doi\":\"10.15673/pigc.v16i2.2439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that every pseudocompact topological group is precompact, we extend this result to a class of subsemigroup of topological groups. Then we use this results to prove that cancellative locally compact countably compact topological semigroups with open shifts are topological groups and to give a sufficient condition under which a locally compact monothetic topological semigroup is a compact topological group.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/pigc.v16i2.2439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/pigc.v16i2.2439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

已知每一个伪紧拓扑群都是预紧的,我们将这一结果推广到一类拓扑群的子半群。然后利用这一结果证明了具有开移的可消局部紧可数紧拓扑半群是拓扑群,并给出了局部紧一元拓扑半群是紧拓扑群的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pseudocompact and precompact topological subsemigroups of topological groups
It is known that every pseudocompact topological group is precompact, we extend this result to a class of subsemigroup of topological groups. Then we use this results to prove that cancellative locally compact countably compact topological semigroups with open shifts are topological groups and to give a sufficient condition under which a locally compact monothetic topological semigroup is a compact topological group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信