{"title":"块wigner型矩阵线性谱统计量的中心极限定理","authors":"Zheng-G Wang, Jianfeng Yao","doi":"10.1142/s2010326323500065","DOIUrl":null,"url":null,"abstract":"Motivated by the stochastic block model, we investigate a class of Wigner-type matrices with certain block structures, and establish a CLT for the corresponding linear spectral statistics via the large-deviation bounds from local law and the cumulant expansion formula. We apply the results to the stochastic block model. Specifically, a class of renormalized adjacency matrices will be block-Wigner-type matrices. Further, we show that for certain estimator of such renormalized adjacency matrices, which will be no longer Wigner-type but share long-range non-decaying weak correlations among the entries, the linear spectral statistics of such estimators will still share the same limiting behavior as those of the block-Wigner-type matrices, thus enabling hypothesis testing about stochastic block model.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Central Limit Theorem for Linear Spectral Statistics of Block-Wigner-type Matrices\",\"authors\":\"Zheng-G Wang, Jianfeng Yao\",\"doi\":\"10.1142/s2010326323500065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the stochastic block model, we investigate a class of Wigner-type matrices with certain block structures, and establish a CLT for the corresponding linear spectral statistics via the large-deviation bounds from local law and the cumulant expansion formula. We apply the results to the stochastic block model. Specifically, a class of renormalized adjacency matrices will be block-Wigner-type matrices. Further, we show that for certain estimator of such renormalized adjacency matrices, which will be no longer Wigner-type but share long-range non-decaying weak correlations among the entries, the linear spectral statistics of such estimators will still share the same limiting behavior as those of the block-Wigner-type matrices, thus enabling hypothesis testing about stochastic block model.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326323500065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326323500065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Central Limit Theorem for Linear Spectral Statistics of Block-Wigner-type Matrices
Motivated by the stochastic block model, we investigate a class of Wigner-type matrices with certain block structures, and establish a CLT for the corresponding linear spectral statistics via the large-deviation bounds from local law and the cumulant expansion formula. We apply the results to the stochastic block model. Specifically, a class of renormalized adjacency matrices will be block-Wigner-type matrices. Further, we show that for certain estimator of such renormalized adjacency matrices, which will be no longer Wigner-type but share long-range non-decaying weak correlations among the entries, the linear spectral statistics of such estimators will still share the same limiting behavior as those of the block-Wigner-type matrices, thus enabling hypothesis testing about stochastic block model.