用多元线性回归和随机森林方法模拟印度西北部数据稀缺地区的PM2.5

IF 2.7 Q1 GEOGRAPHY
V. Sharma, Swagata Ghosh, S. Dey, Sultan Singh
{"title":"用多元线性回归和随机森林方法模拟印度西北部数据稀缺地区的PM2.5","authors":"V. Sharma, Swagata Ghosh, S. Dey, Sultan Singh","doi":"10.1080/19475683.2023.2183523","DOIUrl":null,"url":null,"abstract":"ABSTRACT PM2.5 (Particulate matter with aerodynamic diameter <2.5 m) concentrations above permissible limit causes air quality deterioration and hampers human health. Due to the lack of a good spatial network of ground-based PM monitoring sites and systematic checking, the availability of continuous data of PM2.5 concentrations at macro and meso scales is restricted. Present research estimated PM2.5 concentrations at high (1 km) resolution over Faridabad, Ghaziabad, Gurugram and Gautam Buddha Nagar, a data-scarce zone of the highly urbanized area of northwestern India for the year 2019 using Random Forest (RF), Multi-Linear Regression (MLR) models and Hybrid Model combining RF and MLR. It included Aerosol Optical Depth (AOD), meteorological data and limited in-situ data of PM2.5. For validation, the correlation coefficient (R), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE) and Relative Prediction Error (RPE) have been utilized. The hybrid model estimated PM2.5 with a greater correlation (R = 0.865) and smaller RPE (22.41%) compared to standalone MLR/RF models. Despite the inadequate in-situ data, Greater Noida has been found to have a high correlation (R = 0.933) and low RPE (32.13%) in the hybrid model. The most polluted seasons of the year are winter (137.28 µgm−3) and post-monsoon (112.93 µgm−3), whereas the wet monsoon (44.56 µgm−3) season is the cleanest. The highest PM2.5 level was recorded in Noida followed by Ghaziabad, Greater Noida and Faridabad. The findings of the present research will provide an input dataset for air pollution exposure risk research in parts of northwestern India with sparse monitoring data.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"135 1","pages":"415 - 427"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling PM2.5 for Data-Scarce Zone of Northwestern India using Multi Linear Regression and Random Forest Approaches\",\"authors\":\"V. Sharma, Swagata Ghosh, S. Dey, Sultan Singh\",\"doi\":\"10.1080/19475683.2023.2183523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT PM2.5 (Particulate matter with aerodynamic diameter <2.5 m) concentrations above permissible limit causes air quality deterioration and hampers human health. Due to the lack of a good spatial network of ground-based PM monitoring sites and systematic checking, the availability of continuous data of PM2.5 concentrations at macro and meso scales is restricted. Present research estimated PM2.5 concentrations at high (1 km) resolution over Faridabad, Ghaziabad, Gurugram and Gautam Buddha Nagar, a data-scarce zone of the highly urbanized area of northwestern India for the year 2019 using Random Forest (RF), Multi-Linear Regression (MLR) models and Hybrid Model combining RF and MLR. It included Aerosol Optical Depth (AOD), meteorological data and limited in-situ data of PM2.5. For validation, the correlation coefficient (R), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE) and Relative Prediction Error (RPE) have been utilized. The hybrid model estimated PM2.5 with a greater correlation (R = 0.865) and smaller RPE (22.41%) compared to standalone MLR/RF models. Despite the inadequate in-situ data, Greater Noida has been found to have a high correlation (R = 0.933) and low RPE (32.13%) in the hybrid model. The most polluted seasons of the year are winter (137.28 µgm−3) and post-monsoon (112.93 µgm−3), whereas the wet monsoon (44.56 µgm−3) season is the cleanest. The highest PM2.5 level was recorded in Noida followed by Ghaziabad, Greater Noida and Faridabad. The findings of the present research will provide an input dataset for air pollution exposure risk research in parts of northwestern India with sparse monitoring data.\",\"PeriodicalId\":46270,\"journal\":{\"name\":\"Annals of GIS\",\"volume\":\"135 1\",\"pages\":\"415 - 427\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of GIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475683.2023.2183523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2023.2183523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

PM2.5(空气动力学直径<2.5 m的颗粒物)浓度超过允许限值会导致空气质量恶化,危害人体健康。由于缺乏良好的地面PM监测点空间网络和系统的检测,PM2.5浓度在宏观和中尺度上的连续数据的可用性受到限制。目前的研究使用随机森林(RF)、多元线性回归(MLR)模型和结合RF和MLR的混合模型估算了2019年印度西北部高度城市化地区的数据稀缺区法里达巴德、加兹阿巴德、古鲁格拉姆和高塔姆佛纳加尔的高(1公里)分辨率PM2.5浓度。它包括气溶胶光学深度(AOD)、气象数据和有限的PM2.5原位数据。采用相关系数(R)、均方根误差(RMSE)、平均绝对误差(MAE)和相对预测误差(RPE)进行验证。与独立MLR/RF模型相比,混合模型估算PM2.5的相关性更大(R = 0.865), RPE更小(22.41%)。尽管现场数据不足,但在混合模型中发现Greater Noida具有高相关性(R = 0.933)和低RPE(32.13%)。一年中污染最严重的季节是冬季(137.28µgm−3)和季风后(112.93µgm−3),而湿季风季节(44.56µgm−3)最干净。PM2.5水平最高的是诺伊达,其次是加济阿巴德、大诺伊达和法里达巴德。本研究的结果将为监测数据稀少的印度西北部部分地区的空气污染暴露风险研究提供一个输入数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling PM2.5 for Data-Scarce Zone of Northwestern India using Multi Linear Regression and Random Forest Approaches
ABSTRACT PM2.5 (Particulate matter with aerodynamic diameter <2.5 m) concentrations above permissible limit causes air quality deterioration and hampers human health. Due to the lack of a good spatial network of ground-based PM monitoring sites and systematic checking, the availability of continuous data of PM2.5 concentrations at macro and meso scales is restricted. Present research estimated PM2.5 concentrations at high (1 km) resolution over Faridabad, Ghaziabad, Gurugram and Gautam Buddha Nagar, a data-scarce zone of the highly urbanized area of northwestern India for the year 2019 using Random Forest (RF), Multi-Linear Regression (MLR) models and Hybrid Model combining RF and MLR. It included Aerosol Optical Depth (AOD), meteorological data and limited in-situ data of PM2.5. For validation, the correlation coefficient (R), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE) and Relative Prediction Error (RPE) have been utilized. The hybrid model estimated PM2.5 with a greater correlation (R = 0.865) and smaller RPE (22.41%) compared to standalone MLR/RF models. Despite the inadequate in-situ data, Greater Noida has been found to have a high correlation (R = 0.933) and low RPE (32.13%) in the hybrid model. The most polluted seasons of the year are winter (137.28 µgm−3) and post-monsoon (112.93 µgm−3), whereas the wet monsoon (44.56 µgm−3) season is the cleanest. The highest PM2.5 level was recorded in Noida followed by Ghaziabad, Greater Noida and Faridabad. The findings of the present research will provide an input dataset for air pollution exposure risk research in parts of northwestern India with sparse monitoring data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信