{"title":"区隔化生物传感器阵列的精确蛋白质测定","authors":"D. Bechstein, Jr Lee, E. Ng, S. X. Wang","doi":"10.1109/TRANSDUCERS.2015.7181255","DOIUrl":null,"url":null,"abstract":"A biological measurement microsystem enables precision protein assays by compartmentalization of biosensors in a sensor array. Using a PDMS microfluidic interface on an 8 by 8 Giant Magnetoresistive sensor array, this compartmentalization technique performs all required measurements, including biological references, on a single sensor chip alongside the actual sample(s) to be measured. All data is acquired simultaneously on a single chip, circumventing a range of possible errors currently present in sequential biosensor measurement approaches. With our approach, we achieve a low concentration estimation error of 11%. Additionally this compartmentalization technique enables high throughput measurements using multiple samples on a single chip with a large-scale array of solid-state sensors.","PeriodicalId":6465,"journal":{"name":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precision protein assays on compartmentalized biosensor arrays\",\"authors\":\"D. Bechstein, Jr Lee, E. Ng, S. X. Wang\",\"doi\":\"10.1109/TRANSDUCERS.2015.7181255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A biological measurement microsystem enables precision protein assays by compartmentalization of biosensors in a sensor array. Using a PDMS microfluidic interface on an 8 by 8 Giant Magnetoresistive sensor array, this compartmentalization technique performs all required measurements, including biological references, on a single sensor chip alongside the actual sample(s) to be measured. All data is acquired simultaneously on a single chip, circumventing a range of possible errors currently present in sequential biosensor measurement approaches. With our approach, we achieve a low concentration estimation error of 11%. Additionally this compartmentalization technique enables high throughput measurements using multiple samples on a single chip with a large-scale array of solid-state sensors.\",\"PeriodicalId\":6465,\"journal\":{\"name\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2015.7181255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2015.7181255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Precision protein assays on compartmentalized biosensor arrays
A biological measurement microsystem enables precision protein assays by compartmentalization of biosensors in a sensor array. Using a PDMS microfluidic interface on an 8 by 8 Giant Magnetoresistive sensor array, this compartmentalization technique performs all required measurements, including biological references, on a single sensor chip alongside the actual sample(s) to be measured. All data is acquired simultaneously on a single chip, circumventing a range of possible errors currently present in sequential biosensor measurement approaches. With our approach, we achieve a low concentration estimation error of 11%. Additionally this compartmentalization technique enables high throughput measurements using multiple samples on a single chip with a large-scale array of solid-state sensors.