连续与离散耦合动力系统的部分同步

I. Belykh, V. Belykh
{"title":"连续与离散耦合动力系统的部分同步","authors":"I. Belykh, V. Belykh","doi":"10.1109/ISCAS.2000.856102","DOIUrl":null,"url":null,"abstract":"The effects of global, partial and anti-phase synchronization of diffusively coupled dynamical systems are investigated via the linear invariant manifolds of the corresponding differential and difference equations. A selfsimilar behavior and a hierarchy of the manifolds are discovered. Stability of invariant manifolds is proved via the method of Lyapunov functions. Theoretical results are illustrated by examples of coupled Rossler systems.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":"14 1","pages":"483-486 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On partial synchronization of continuous and discrete-time coupled dynamical systems\",\"authors\":\"I. Belykh, V. Belykh\",\"doi\":\"10.1109/ISCAS.2000.856102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of global, partial and anti-phase synchronization of diffusively coupled dynamical systems are investigated via the linear invariant manifolds of the corresponding differential and difference equations. A selfsimilar behavior and a hierarchy of the manifolds are discovered. Stability of invariant manifolds is proved via the method of Lyapunov functions. Theoretical results are illustrated by examples of coupled Rossler systems.\",\"PeriodicalId\":6422,\"journal\":{\"name\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"volume\":\"14 1\",\"pages\":\"483-486 vol.3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2000.856102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.856102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过相应的微分方程和差分方程的线性不变流形,研究了扩散耦合动力系统的全局、部分和反相位同步效应。发现了流形的自相似行为和层次结构。用李雅普诺夫函数的方法证明了不变流形的稳定性。通过耦合罗斯勒系统的实例说明了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On partial synchronization of continuous and discrete-time coupled dynamical systems
The effects of global, partial and anti-phase synchronization of diffusively coupled dynamical systems are investigated via the linear invariant manifolds of the corresponding differential and difference equations. A selfsimilar behavior and a hierarchy of the manifolds are discovered. Stability of invariant manifolds is proved via the method of Lyapunov functions. Theoretical results are illustrated by examples of coupled Rossler systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信