基于布谷鸟-宿主协同进化元启发式的复杂基准函数全局优化

Sudhanshu K. Mishra
{"title":"基于布谷鸟-宿主协同进化元启发式的复杂基准函数全局优化","authors":"Sudhanshu K. Mishra","doi":"10.2139/SSRN.2128079","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method of global optimization based on cuckoo-host co-evaluation. It also develops a Fortran-77 code for the algorithm. The algorithm has been tested on 96 benchmark functions (of which the results of 30 relatively harder problems have been reported). The proposed method is comparable to the Differential Evolution method of global optimization.","PeriodicalId":10688,"journal":{"name":"Computing Technologies eJournal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global Optimization of Some Difficult Benchmark Functions by Cuckoo-Host Co-Evolution Meta-Heuristics\",\"authors\":\"Sudhanshu K. Mishra\",\"doi\":\"10.2139/SSRN.2128079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method of global optimization based on cuckoo-host co-evaluation. It also develops a Fortran-77 code for the algorithm. The algorithm has been tested on 96 benchmark functions (of which the results of 30 relatively harder problems have been reported). The proposed method is comparable to the Differential Evolution method of global optimization.\",\"PeriodicalId\":10688,\"journal\":{\"name\":\"Computing Technologies eJournal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing Technologies eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/SSRN.2128079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing Technologies eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.2128079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于布谷鸟-宿主协同评价的全局优化方法。并为该算法开发了Fortran-77代码。该算法已经在96个基准函数上进行了测试(其中报告了30个相对较难的问题的结果)。该方法与全局优化的差分进化方法具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Optimization of Some Difficult Benchmark Functions by Cuckoo-Host Co-Evolution Meta-Heuristics
This paper proposes a novel method of global optimization based on cuckoo-host co-evaluation. It also develops a Fortran-77 code for the algorithm. The algorithm has been tested on 96 benchmark functions (of which the results of 30 relatively harder problems have been reported). The proposed method is comparable to the Differential Evolution method of global optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信