基于溶液的无富勒烯路线实现高性能绿色选择有机光电探测器

IF 2.9 4区 物理与天体物理 Q2 OPTICS
Yang Cao, J. Mei, Kai Xia, Ting Zhao, Jing Zhao, N. Gasparini, V. Pecunia
{"title":"基于溶液的无富勒烯路线实现高性能绿色选择有机光电探测器","authors":"Yang Cao, J. Mei, Kai Xia, Ting Zhao, Jing Zhao, N. Gasparini, V. Pecunia","doi":"10.1088/2515-7639/aca222","DOIUrl":null,"url":null,"abstract":"Ongoing developments in machine vision, wearables, and the Internet of Things have led to strong demand for easy-to-fabricate, color-selective photodetectors. Narrowband-absorption-type (NBA) printable organic photodetectors provide an attractive solution, given their spectral robustness and fabrication simplicity. However, a key remaining challenge to realizing their potential is to concurrently achieve high photoconversion efficiency and spectral selectivity. Herein, this challenge is tackled by investigating a non-fullerene-based route to green-selective, solution-based photodetectors. Soluble phthalocyanine acceptor PhO-Cl6BsubPc is considered due to its high absorption selectivity to green photons. Blends with soluble quinacridones are pursued to realize the ideal of a donor:acceptor layer selectively absorbing the target photons throughout its volume. A latent-pigment route to the solution-based deposition of linear trans-quinacridone (QA) enables well-intermixed QA:PhO-Cl6BsubPc layers. Green-selective photodetectors with cutting-edge performance are thus realized, achieving a 25% increase in external quantum efficiency compared to all prior solution-based NBA implementations, as well as a nearly five-fold enhancement of the green-to-blue spectral rejection ratio. The merit of this approach is further illustrated by comparison with the corresponding fullerene-based photodetectors. By demonstrating an approach to solution-based NBA photodetectors with cutting-edge photoconversion efficiency and spectral selectivity, this study represents an important step toward printable, high-performance organic color sensors and imagers.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solution-based fullerene-free route enables high-performance green-selective organic photodetectors\",\"authors\":\"Yang Cao, J. Mei, Kai Xia, Ting Zhao, Jing Zhao, N. Gasparini, V. Pecunia\",\"doi\":\"10.1088/2515-7639/aca222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ongoing developments in machine vision, wearables, and the Internet of Things have led to strong demand for easy-to-fabricate, color-selective photodetectors. Narrowband-absorption-type (NBA) printable organic photodetectors provide an attractive solution, given their spectral robustness and fabrication simplicity. However, a key remaining challenge to realizing their potential is to concurrently achieve high photoconversion efficiency and spectral selectivity. Herein, this challenge is tackled by investigating a non-fullerene-based route to green-selective, solution-based photodetectors. Soluble phthalocyanine acceptor PhO-Cl6BsubPc is considered due to its high absorption selectivity to green photons. Blends with soluble quinacridones are pursued to realize the ideal of a donor:acceptor layer selectively absorbing the target photons throughout its volume. A latent-pigment route to the solution-based deposition of linear trans-quinacridone (QA) enables well-intermixed QA:PhO-Cl6BsubPc layers. Green-selective photodetectors with cutting-edge performance are thus realized, achieving a 25% increase in external quantum efficiency compared to all prior solution-based NBA implementations, as well as a nearly five-fold enhancement of the green-to-blue spectral rejection ratio. The merit of this approach is further illustrated by comparison with the corresponding fullerene-based photodetectors. By demonstrating an approach to solution-based NBA photodetectors with cutting-edge photoconversion efficiency and spectral selectivity, this study represents an important step toward printable, high-performance organic color sensors and imagers.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/aca222\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/aca222","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

摘要

机器视觉、可穿戴设备和物联网的持续发展导致了对易于制造、可选色光电探测器的强劲需求。窄带吸收型(NBA)可打印有机光电探测器提供了一个有吸引力的解决方案,因为它们的光谱鲁棒性和制造简单。然而,实现其潜力的一个关键挑战是同时实现高光转换效率和光谱选择性。在这里,通过研究一种非富勒烯为基础的途径来解决这一挑战,这种途径是绿色选择的,基于溶液的光电探测器。可溶性酞菁受体phoo - cl6bsubpc由于其对绿色光子的高吸收选择性而被考虑。与可溶性喹吖酮的共混物是为了实现供体:受体层选择性地吸收整个体积的目标光子的理想。基于溶液沉积线性反式喹吖酮(QA)的潜在色素路线使QA: ph - cl6bsubpc层能够很好地混合。因此,实现了具有尖端性能的绿色选择光电探测器,与所有先前基于解决方案的NBA实现相比,实现了25%的外部量子效率提高,以及近五倍的绿蓝光谱拒绝比增强。通过与相应的富勒烯基光电探测器的比较,进一步说明了这种方法的优点。通过展示一种具有尖端光转换效率和光谱选择性的基于溶液的NBA光电探测器的方法,该研究代表了向可打印、高性能有机颜色传感器和成像仪迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution-based fullerene-free route enables high-performance green-selective organic photodetectors
Ongoing developments in machine vision, wearables, and the Internet of Things have led to strong demand for easy-to-fabricate, color-selective photodetectors. Narrowband-absorption-type (NBA) printable organic photodetectors provide an attractive solution, given their spectral robustness and fabrication simplicity. However, a key remaining challenge to realizing their potential is to concurrently achieve high photoconversion efficiency and spectral selectivity. Herein, this challenge is tackled by investigating a non-fullerene-based route to green-selective, solution-based photodetectors. Soluble phthalocyanine acceptor PhO-Cl6BsubPc is considered due to its high absorption selectivity to green photons. Blends with soluble quinacridones are pursued to realize the ideal of a donor:acceptor layer selectively absorbing the target photons throughout its volume. A latent-pigment route to the solution-based deposition of linear trans-quinacridone (QA) enables well-intermixed QA:PhO-Cl6BsubPc layers. Green-selective photodetectors with cutting-edge performance are thus realized, achieving a 25% increase in external quantum efficiency compared to all prior solution-based NBA implementations, as well as a nearly five-fold enhancement of the green-to-blue spectral rejection ratio. The merit of this approach is further illustrated by comparison with the corresponding fullerene-based photodetectors. By demonstrating an approach to solution-based NBA photodetectors with cutting-edge photoconversion efficiency and spectral selectivity, this study represents an important step toward printable, high-performance organic color sensors and imagers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信