分数阶系统线性二次最优控制问题中的值泛函与最优反馈控制

IF 1 4区 数学 Q1 MATHEMATICS
M. Gomoyunov
{"title":"分数阶系统线性二次最优控制问题中的值泛函与最优反馈控制","authors":"M. Gomoyunov","doi":"10.3934/mcrf.2023002","DOIUrl":null,"url":null,"abstract":"In this paper, a finite-horizon optimal control problem involving a dynamical system described by a linear Caputo fractional differential equation and a quadratic cost functional is considered. An explicit formula for the value functional is given, which includes a solution of a certain Fredholm integral equation. A step-by-step feedback control procedure for constructing $\\varepsilon$-optimal controls with any accuracy $\\varepsilon>0$ is proposed. The basis for obtaining these results is the study of a solution of the associated Hamilton-Jacobi-Bellman equation with so-called fractional coinvariant derivatives.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"37 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Value functional and optimal feedback control in linear-quadratic optimal control problem for fractional-order system\",\"authors\":\"M. Gomoyunov\",\"doi\":\"10.3934/mcrf.2023002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a finite-horizon optimal control problem involving a dynamical system described by a linear Caputo fractional differential equation and a quadratic cost functional is considered. An explicit formula for the value functional is given, which includes a solution of a certain Fredholm integral equation. A step-by-step feedback control procedure for constructing $\\\\varepsilon$-optimal controls with any accuracy $\\\\varepsilon>0$ is proposed. The basis for obtaining these results is the study of a solution of the associated Hamilton-Jacobi-Bellman equation with so-called fractional coinvariant derivatives.\",\"PeriodicalId\":48889,\"journal\":{\"name\":\"Mathematical Control and Related Fields\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Control and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/mcrf.2023002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2023002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

研究了一类用线性卡普托分数阶微分方程和二次代价泛函描述的动力系统的有限视界最优控制问题。给出了值泛函的显式公式,其中包含了某Fredholm积分方程的解。提出了一种用于构造任意精度$\varepsilon>0$的$\varepsilon$最优控制器的分步反馈控制方法。获得这些结果的基础是研究具有所谓分数阶协变导数的相关Hamilton-Jacobi-Bellman方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Value functional and optimal feedback control in linear-quadratic optimal control problem for fractional-order system
In this paper, a finite-horizon optimal control problem involving a dynamical system described by a linear Caputo fractional differential equation and a quadratic cost functional is considered. An explicit formula for the value functional is given, which includes a solution of a certain Fredholm integral equation. A step-by-step feedback control procedure for constructing $\varepsilon$-optimal controls with any accuracy $\varepsilon>0$ is proposed. The basis for obtaining these results is the study of a solution of the associated Hamilton-Jacobi-Bellman equation with so-called fractional coinvariant derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Control and Related Fields
Mathematical Control and Related Fields MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
8.30%
发文量
67
期刊介绍: MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信