流体计理论

T. Kambe
{"title":"流体计理论","authors":"T. Kambe","doi":"10.34257/gjsfravol21is4pg113","DOIUrl":null,"url":null,"abstract":"According to the general gauge principle, Fluid Gauge Theory is presented to cover a wider class of flow fields of a perfect fluid without internal energy dissipation under anisotropic stress field. Thus, the theory of fluid mechanics is extended to cover time dependent rotational flows under anisotropic stress field of a compressible perfect fluid, including turbulent flows. Eulerian fluid mechanics is characterized with isotropic pressure stress fields. The study is motivated from three observations. First one is experimental observations reporting large-scale structures coexisting with turbulent flow fields. This encourages a study of how such structures observed experimentally are possible in turbulent shear flows, Second one is a theoretical and mathematical observation: the ”General solution to Euler’s equation of motion” (found by Kambe in 2013) predicts a new set of four background-fields, existing in the linked 4d-spacetime. Third one is a physical query, ”what symmetry implies the current conservation law ?”. The latter two observations encourage a gauge-theoretic formulation by defining a differential one-form representing the interaction between the fluid-current field jμand a background field aμ.","PeriodicalId":12547,"journal":{"name":"Global Journal of Science Frontier Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid Gauge Theory\",\"authors\":\"T. Kambe\",\"doi\":\"10.34257/gjsfravol21is4pg113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the general gauge principle, Fluid Gauge Theory is presented to cover a wider class of flow fields of a perfect fluid without internal energy dissipation under anisotropic stress field. Thus, the theory of fluid mechanics is extended to cover time dependent rotational flows under anisotropic stress field of a compressible perfect fluid, including turbulent flows. Eulerian fluid mechanics is characterized with isotropic pressure stress fields. The study is motivated from three observations. First one is experimental observations reporting large-scale structures coexisting with turbulent flow fields. This encourages a study of how such structures observed experimentally are possible in turbulent shear flows, Second one is a theoretical and mathematical observation: the ”General solution to Euler’s equation of motion” (found by Kambe in 2013) predicts a new set of four background-fields, existing in the linked 4d-spacetime. Third one is a physical query, ”what symmetry implies the current conservation law ?”. The latter two observations encourage a gauge-theoretic formulation by defining a differential one-form representing the interaction between the fluid-current field jμand a background field aμ.\",\"PeriodicalId\":12547,\"journal\":{\"name\":\"Global Journal of Science Frontier Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Journal of Science Frontier Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34257/gjsfravol21is4pg113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Science Frontier Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34257/gjsfravol21is4pg113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据一般的测量原理,提出了流体测量理论,以涵盖更广泛的在各向异性应力场下无内能耗散的完美流体流场。从而将流体力学理论扩展到可压缩完美流体各向异性应力场下随时间变化的旋转流动,包括湍流。欧拉流体力学具有各向同性压力应力场的特点。这项研究的动机来自三个方面的观察。第一个是实验观测,报道了大尺度结构与湍流流场共存。第二个是理论和数学观察:“欧拉运动方程的通解”(由Kambe在2013年发现)预测了一组新的四个背景场,存在于相关的4d时空中。第三个问题是一个物理问题,“什么样的对称性意味着当前的守恒定律?”后两个观测结果通过定义一种表示流场和背景场之间相互作用的微分一种形式,鼓励了一个量规理论公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluid Gauge Theory
According to the general gauge principle, Fluid Gauge Theory is presented to cover a wider class of flow fields of a perfect fluid without internal energy dissipation under anisotropic stress field. Thus, the theory of fluid mechanics is extended to cover time dependent rotational flows under anisotropic stress field of a compressible perfect fluid, including turbulent flows. Eulerian fluid mechanics is characterized with isotropic pressure stress fields. The study is motivated from three observations. First one is experimental observations reporting large-scale structures coexisting with turbulent flow fields. This encourages a study of how such structures observed experimentally are possible in turbulent shear flows, Second one is a theoretical and mathematical observation: the ”General solution to Euler’s equation of motion” (found by Kambe in 2013) predicts a new set of four background-fields, existing in the linked 4d-spacetime. Third one is a physical query, ”what symmetry implies the current conservation law ?”. The latter two observations encourage a gauge-theoretic formulation by defining a differential one-form representing the interaction between the fluid-current field jμand a background field aμ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信