{"title":"考虑滑动和热弹流润滑的不同局部缺陷深沟球轴承动力学建模","authors":"Yubao Tian, C. Yan, Yaofeng Liu, Jianxiong Kang, Zunyou Lu, Lixiao Wu","doi":"10.1177/14644193231182038","DOIUrl":null,"url":null,"abstract":"The vibration characteristics and skidding behaviour of deep groove ball bearings (DGBBs) are significantly influenced by the evolution of local defects and thermal effects. In previous studies, the influences of skidding and thermal effects were not considered in order to simplify the model of defective bearings. But the presence of skidding and thermal should not be ignored to accurately simulate the operation of bearing. To gain a comprehensive understanding of the operational mechanism of defective bearings, it is crucial to examine the skidding and thermal characteristics of various defect types using dynamic modelling approaches. In this study, the DGBB dynamic model for seven types of defects is established, which considers the self-rotation, rotation, and radial motion of ball, the contact force, ball/cage and ball/raceway skidding, and the effects of thermal elastohydrodynamic lubrication (TEHL). Experimental data from a machine fault simulator test rig is utilized to validate the accuracy of the proposed modelling methods. The results indicate that compound defects (CDs) result in higher vibration amplitudes and more severe skidding phenomena compared to single defects (SDs). Furthermore, compound defects exhibit a greater thermal effect on the oil film in the contact area than SDs, significantly impacting the operational performance of the bearing.","PeriodicalId":54565,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","volume":"36 1","pages":"511 - 533"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic modelling of deep groove ball bearings with different local defects considering skidding and thermal elastohydrodynamic lubrication\",\"authors\":\"Yubao Tian, C. Yan, Yaofeng Liu, Jianxiong Kang, Zunyou Lu, Lixiao Wu\",\"doi\":\"10.1177/14644193231182038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vibration characteristics and skidding behaviour of deep groove ball bearings (DGBBs) are significantly influenced by the evolution of local defects and thermal effects. In previous studies, the influences of skidding and thermal effects were not considered in order to simplify the model of defective bearings. But the presence of skidding and thermal should not be ignored to accurately simulate the operation of bearing. To gain a comprehensive understanding of the operational mechanism of defective bearings, it is crucial to examine the skidding and thermal characteristics of various defect types using dynamic modelling approaches. In this study, the DGBB dynamic model for seven types of defects is established, which considers the self-rotation, rotation, and radial motion of ball, the contact force, ball/cage and ball/raceway skidding, and the effects of thermal elastohydrodynamic lubrication (TEHL). Experimental data from a machine fault simulator test rig is utilized to validate the accuracy of the proposed modelling methods. The results indicate that compound defects (CDs) result in higher vibration amplitudes and more severe skidding phenomena compared to single defects (SDs). Furthermore, compound defects exhibit a greater thermal effect on the oil film in the contact area than SDs, significantly impacting the operational performance of the bearing.\",\"PeriodicalId\":54565,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"volume\":\"36 1\",\"pages\":\"511 - 533\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/14644193231182038\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-Body Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14644193231182038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Dynamic modelling of deep groove ball bearings with different local defects considering skidding and thermal elastohydrodynamic lubrication
The vibration characteristics and skidding behaviour of deep groove ball bearings (DGBBs) are significantly influenced by the evolution of local defects and thermal effects. In previous studies, the influences of skidding and thermal effects were not considered in order to simplify the model of defective bearings. But the presence of skidding and thermal should not be ignored to accurately simulate the operation of bearing. To gain a comprehensive understanding of the operational mechanism of defective bearings, it is crucial to examine the skidding and thermal characteristics of various defect types using dynamic modelling approaches. In this study, the DGBB dynamic model for seven types of defects is established, which considers the self-rotation, rotation, and radial motion of ball, the contact force, ball/cage and ball/raceway skidding, and the effects of thermal elastohydrodynamic lubrication (TEHL). Experimental data from a machine fault simulator test rig is utilized to validate the accuracy of the proposed modelling methods. The results indicate that compound defects (CDs) result in higher vibration amplitudes and more severe skidding phenomena compared to single defects (SDs). Furthermore, compound defects exhibit a greater thermal effect on the oil film in the contact area than SDs, significantly impacting the operational performance of the bearing.
期刊介绍:
The Journal of Multi-body Dynamics is a multi-disciplinary forum covering all aspects of mechanical design and dynamic analysis of multi-body systems. It is essential reading for academic and industrial research and development departments active in the mechanical design, monitoring and dynamic analysis of multi-body systems.