主动选择对象和属性之间的注释

Adriana Kovashka, Sudheendra Vijayanarasimhan, K. Grauman
{"title":"主动选择对象和属性之间的注释","authors":"Adriana Kovashka, Sudheendra Vijayanarasimhan, K. Grauman","doi":"10.1109/ICCV.2011.6126395","DOIUrl":null,"url":null,"abstract":"We present an active learning approach to choose image annotation requests among both object category labels and the objects' attribute labels. The goal is to solicit those labels that will best use human effort when training a multi-class object recognition model. In contrast to previous work in active visual category learning, our approach directly exploits the dependencies between human-nameable visual attributes and the objects they describe, shifting its requests in either label space accordingly. We adopt a discriminative latent model that captures object-attribute and attribute-attribute relationships, and then define a suitable entropy reduction selection criterion to predict the influence a new label might have throughout those connections. On three challenging datasets, we demonstrate that the method can more successfully accelerate object learning relative to both passive learning and traditional active learning approaches.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"11 4 1","pages":"1403-1410"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Actively selecting annotations among objects and attributes\",\"authors\":\"Adriana Kovashka, Sudheendra Vijayanarasimhan, K. Grauman\",\"doi\":\"10.1109/ICCV.2011.6126395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an active learning approach to choose image annotation requests among both object category labels and the objects' attribute labels. The goal is to solicit those labels that will best use human effort when training a multi-class object recognition model. In contrast to previous work in active visual category learning, our approach directly exploits the dependencies between human-nameable visual attributes and the objects they describe, shifting its requests in either label space accordingly. We adopt a discriminative latent model that captures object-attribute and attribute-attribute relationships, and then define a suitable entropy reduction selection criterion to predict the influence a new label might have throughout those connections. On three challenging datasets, we demonstrate that the method can more successfully accelerate object learning relative to both passive learning and traditional active learning approaches.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":\"11 4 1\",\"pages\":\"1403-1410\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

我们提出了一种主动学习方法,在对象类别标签和对象属性标签之间选择图像标注请求。目标是在训练多类对象识别模型时,征求那些最能利用人力的标签。与之前在主动视觉类别学习方面的工作相比,我们的方法直接利用了人类可命名的视觉属性和它们所描述的对象之间的依赖关系,相应地在两个标签空间中转移其请求。我们采用了一个判别潜模型来捕获对象-属性和属性-属性关系,然后定义一个合适的熵降选择标准来预测一个新标签在这些连接中可能产生的影响。在三个具有挑战性的数据集上,我们证明了相对于被动学习和传统主动学习方法,该方法可以更成功地加速对象学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Actively selecting annotations among objects and attributes
We present an active learning approach to choose image annotation requests among both object category labels and the objects' attribute labels. The goal is to solicit those labels that will best use human effort when training a multi-class object recognition model. In contrast to previous work in active visual category learning, our approach directly exploits the dependencies between human-nameable visual attributes and the objects they describe, shifting its requests in either label space accordingly. We adopt a discriminative latent model that captures object-attribute and attribute-attribute relationships, and then define a suitable entropy reduction selection criterion to predict the influence a new label might have throughout those connections. On three challenging datasets, we demonstrate that the method can more successfully accelerate object learning relative to both passive learning and traditional active learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信