平移空间的自同构与Higman-Thompson群:双面情况

C. Bleak, P. Cameron, F. Olukoya
{"title":"平移空间的自同构与Higman-Thompson群:双面情况","authors":"C. Bleak, P. Cameron, F. Olukoya","doi":"10.19086/da.28243","DOIUrl":null,"url":null,"abstract":"In this article, we further explore the nature of a connection between groups of automorphisms of shift spaces and the groups of outer automorphisms of the Higman-Thompson groups $\\{G_{n,r}\\}$. \nIn previous work, the authors show that the group $\\mathrm{Aut}(X_n^{\\mathbb{N}}, \\sigma_{n})$ of automorphisms of the one-sided shift dynamical system over an $n$-letter alphabet naturally embeds as a subgroup of the group $\\mathop{\\mathrm{Out}}(G_{n,r})$ of outer-automorphisms of the Higman-Thompson group $G_{n, r}$, $1 \\le r < n$. In the current article we show that the quotient of the group of automorphisms of the (two-sided) shift dynamical system $\\mathop{\\mathrm{Aut}}(X_n^{\\mathbb{Z}}, \\sigma_{n})$ by its centre embeds as a subgroup $\\mathcal{L}_{n}$ of the outer automorphism group $\\mathop{\\mathrm{Out}}(G_{n,r})$ of $G_{n,r}$. It follows by a result of Ryan that we have the following central extension: $$1 \\to \\langle \\sigma_{n}\\rangle \\to \\mathrm{Aut}(X_n^{\\mathbb{Z}}, \\sigma_{n}) \\to \\mathcal{L}_{n}.$$ \nA consequence of this is that the groups $\\mathrm{Out}(G_{n,r})$ are centreless and have undecidable order problem.","PeriodicalId":8427,"journal":{"name":"arXiv: Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automorphisms of shift spaces and the Higman-Thompson groups: the two-sided case\",\"authors\":\"C. Bleak, P. Cameron, F. Olukoya\",\"doi\":\"10.19086/da.28243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we further explore the nature of a connection between groups of automorphisms of shift spaces and the groups of outer automorphisms of the Higman-Thompson groups $\\\\{G_{n,r}\\\\}$. \\nIn previous work, the authors show that the group $\\\\mathrm{Aut}(X_n^{\\\\mathbb{N}}, \\\\sigma_{n})$ of automorphisms of the one-sided shift dynamical system over an $n$-letter alphabet naturally embeds as a subgroup of the group $\\\\mathop{\\\\mathrm{Out}}(G_{n,r})$ of outer-automorphisms of the Higman-Thompson group $G_{n, r}$, $1 \\\\le r < n$. In the current article we show that the quotient of the group of automorphisms of the (two-sided) shift dynamical system $\\\\mathop{\\\\mathrm{Aut}}(X_n^{\\\\mathbb{Z}}, \\\\sigma_{n})$ by its centre embeds as a subgroup $\\\\mathcal{L}_{n}$ of the outer automorphism group $\\\\mathop{\\\\mathrm{Out}}(G_{n,r})$ of $G_{n,r}$. It follows by a result of Ryan that we have the following central extension: $$1 \\\\to \\\\langle \\\\sigma_{n}\\\\rangle \\\\to \\\\mathrm{Aut}(X_n^{\\\\mathbb{Z}}, \\\\sigma_{n}) \\\\to \\\\mathcal{L}_{n}.$$ \\nA consequence of this is that the groups $\\\\mathrm{Out}(G_{n,r})$ are centreless and have undecidable order problem.\",\"PeriodicalId\":8427,\"journal\":{\"name\":\"arXiv: Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19086/da.28243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19086/da.28243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们进一步探讨了移空间的自同构群与Higman-Thompson群的外自同构群之间的联系的本质$\{G_{n,r}\}$。在之前的工作中,作者证明了$n$ -字母上的单侧移位动力系统的自同构群$\mathrm{Aut}(X_n^{\mathbb{N}}, \sigma_{n})$自然嵌入为Higman-Thompson群的外自同构群$\mathop{\mathrm{Out}}(G_{n,r})$的子群$G_{n, r}$, $1 \le r < n$。在本文中,我们证明了(双边)移动动力系统$\mathop{\mathrm{Aut}}(X_n^{\mathbb{Z}}, \sigma_{n})$的自同构群商的中心嵌入为$G_{n,r}$的外部自同构群$\mathop{\mathrm{Out}}(G_{n,r})$的子群$\mathcal{L}_{n}$。根据Ryan的结果,我们有如下的中心扩展:$$1 \to \langle \sigma_{n}\rangle \to \mathrm{Aut}(X_n^{\mathbb{Z}}, \sigma_{n}) \to \mathcal{L}_{n}.$$这样做的一个结果是,群$\mathrm{Out}(G_{n,r})$是无中心的,并且有不可确定的顺序问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphisms of shift spaces and the Higman-Thompson groups: the two-sided case
In this article, we further explore the nature of a connection between groups of automorphisms of shift spaces and the groups of outer automorphisms of the Higman-Thompson groups $\{G_{n,r}\}$. In previous work, the authors show that the group $\mathrm{Aut}(X_n^{\mathbb{N}}, \sigma_{n})$ of automorphisms of the one-sided shift dynamical system over an $n$-letter alphabet naturally embeds as a subgroup of the group $\mathop{\mathrm{Out}}(G_{n,r})$ of outer-automorphisms of the Higman-Thompson group $G_{n, r}$, $1 \le r < n$. In the current article we show that the quotient of the group of automorphisms of the (two-sided) shift dynamical system $\mathop{\mathrm{Aut}}(X_n^{\mathbb{Z}}, \sigma_{n})$ by its centre embeds as a subgroup $\mathcal{L}_{n}$ of the outer automorphism group $\mathop{\mathrm{Out}}(G_{n,r})$ of $G_{n,r}$. It follows by a result of Ryan that we have the following central extension: $$1 \to \langle \sigma_{n}\rangle \to \mathrm{Aut}(X_n^{\mathbb{Z}}, \sigma_{n}) \to \mathcal{L}_{n}.$$ A consequence of this is that the groups $\mathrm{Out}(G_{n,r})$ are centreless and have undecidable order problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信