神经纤维瘤病突变损伤识别的自动机器学习策略

A. Orjuela-Cañón, Juan Carlos Figueroa–García, Roman Neruda
{"title":"神经纤维瘤病突变损伤识别的自动机器学习策略","authors":"A. Orjuela-Cañón, Juan Carlos Figueroa–García, Roman Neruda","doi":"10.1109/ICMLA52953.2021.00217","DOIUrl":null,"url":null,"abstract":"Machine learning tools have been employed for problem solutions in bioinformatics. However, the parameters tuning of these models cam imply additional difficulties around the specific technique used to classify. In this work data from protein sequences was applied to three auto machine learning strategies to determine the type of mutation for the Neurofibromatosis disease. Results show that the parameters in the machine learning models were found automatically. In addition, these tools were relevant to determine relations between the amino-acids in the protein sequence.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"1341-1344"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Machine Learning Strategies to Damage Identification of Neurofibromatosis Mutations\",\"authors\":\"A. Orjuela-Cañón, Juan Carlos Figueroa–García, Roman Neruda\",\"doi\":\"10.1109/ICMLA52953.2021.00217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning tools have been employed for problem solutions in bioinformatics. However, the parameters tuning of these models cam imply additional difficulties around the specific technique used to classify. In this work data from protein sequences was applied to three auto machine learning strategies to determine the type of mutation for the Neurofibromatosis disease. Results show that the parameters in the machine learning models were found automatically. In addition, these tools were relevant to determine relations between the amino-acids in the protein sequence.\",\"PeriodicalId\":6750,\"journal\":{\"name\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"1 1\",\"pages\":\"1341-1344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA52953.2021.00217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机器学习工具已被用于解决生物信息学中的问题。然而,这些模型的参数调整可能意味着围绕用于分类的特定技术的额外困难。在这项工作中,来自蛋白质序列的数据被应用于三种自动机器学习策略,以确定神经纤维瘤病的突变类型。结果表明,机器学习模型中的参数是自动找到的。此外,这些工具也适用于确定蛋白质序列中氨基酸之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Machine Learning Strategies to Damage Identification of Neurofibromatosis Mutations
Machine learning tools have been employed for problem solutions in bioinformatics. However, the parameters tuning of these models cam imply additional difficulties around the specific technique used to classify. In this work data from protein sequences was applied to three auto machine learning strategies to determine the type of mutation for the Neurofibromatosis disease. Results show that the parameters in the machine learning models were found automatically. In addition, these tools were relevant to determine relations between the amino-acids in the protein sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信