A. Orjuela-Cañón, Juan Carlos Figueroa–García, Roman Neruda
{"title":"神经纤维瘤病突变损伤识别的自动机器学习策略","authors":"A. Orjuela-Cañón, Juan Carlos Figueroa–García, Roman Neruda","doi":"10.1109/ICMLA52953.2021.00217","DOIUrl":null,"url":null,"abstract":"Machine learning tools have been employed for problem solutions in bioinformatics. However, the parameters tuning of these models cam imply additional difficulties around the specific technique used to classify. In this work data from protein sequences was applied to three auto machine learning strategies to determine the type of mutation for the Neurofibromatosis disease. Results show that the parameters in the machine learning models were found automatically. In addition, these tools were relevant to determine relations between the amino-acids in the protein sequence.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"1341-1344"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automated Machine Learning Strategies to Damage Identification of Neurofibromatosis Mutations\",\"authors\":\"A. Orjuela-Cañón, Juan Carlos Figueroa–García, Roman Neruda\",\"doi\":\"10.1109/ICMLA52953.2021.00217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning tools have been employed for problem solutions in bioinformatics. However, the parameters tuning of these models cam imply additional difficulties around the specific technique used to classify. In this work data from protein sequences was applied to three auto machine learning strategies to determine the type of mutation for the Neurofibromatosis disease. Results show that the parameters in the machine learning models were found automatically. In addition, these tools were relevant to determine relations between the amino-acids in the protein sequence.\",\"PeriodicalId\":6750,\"journal\":{\"name\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"1 1\",\"pages\":\"1341-1344\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA52953.2021.00217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Machine Learning Strategies to Damage Identification of Neurofibromatosis Mutations
Machine learning tools have been employed for problem solutions in bioinformatics. However, the parameters tuning of these models cam imply additional difficulties around the specific technique used to classify. In this work data from protein sequences was applied to three auto machine learning strategies to determine the type of mutation for the Neurofibromatosis disease. Results show that the parameters in the machine learning models were found automatically. In addition, these tools were relevant to determine relations between the amino-acids in the protein sequence.