{"title":"偏最小二乘结构方程建模。","authors":"Hamdollah Ravand, Purya Baghaei","doi":"10.7275/D2FA-QV48","DOIUrl":null,"url":null,"abstract":"Structural equation modeling (SEM) has become widespread in educational and psychological research. Its flexibility in addressing complex theoretical models and the proper treatment of measurement error has made it the model of choice for many researchers in the social sciences. Nevertheless, the model imposes some daunting assumptions and restrictions (e.g. normality and relatively large sample sizes) that could discourage practitioners from applying the model. Partial least squares SEM (PLS-SEM) is a nonparametric technique which makes no distributional assumptions and can be estimated with small sample sizes. In this paper a general introduction to PLS-SEM is given and is compared with conventional SEM. Next, step by step procedures, along with R functions, are presented to estimate the model. A data set is analyzed and the outputs are interpreted.","PeriodicalId":20361,"journal":{"name":"Practical Assessment, Research and Evaluation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":"{\"title\":\"Partial Least Squares Structural Equation Modeling with R.\",\"authors\":\"Hamdollah Ravand, Purya Baghaei\",\"doi\":\"10.7275/D2FA-QV48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural equation modeling (SEM) has become widespread in educational and psychological research. Its flexibility in addressing complex theoretical models and the proper treatment of measurement error has made it the model of choice for many researchers in the social sciences. Nevertheless, the model imposes some daunting assumptions and restrictions (e.g. normality and relatively large sample sizes) that could discourage practitioners from applying the model. Partial least squares SEM (PLS-SEM) is a nonparametric technique which makes no distributional assumptions and can be estimated with small sample sizes. In this paper a general introduction to PLS-SEM is given and is compared with conventional SEM. Next, step by step procedures, along with R functions, are presented to estimate the model. A data set is analyzed and the outputs are interpreted.\",\"PeriodicalId\":20361,\"journal\":{\"name\":\"Practical Assessment, Research and Evaluation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"98\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Practical Assessment, Research and Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7275/D2FA-QV48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Practical Assessment, Research and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7275/D2FA-QV48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Partial Least Squares Structural Equation Modeling with R.
Structural equation modeling (SEM) has become widespread in educational and psychological research. Its flexibility in addressing complex theoretical models and the proper treatment of measurement error has made it the model of choice for many researchers in the social sciences. Nevertheless, the model imposes some daunting assumptions and restrictions (e.g. normality and relatively large sample sizes) that could discourage practitioners from applying the model. Partial least squares SEM (PLS-SEM) is a nonparametric technique which makes no distributional assumptions and can be estimated with small sample sizes. In this paper a general introduction to PLS-SEM is given and is compared with conventional SEM. Next, step by step procedures, along with R functions, are presented to estimate the model. A data set is analyzed and the outputs are interpreted.