竞争奇点下的有限部分积分:由有限部分积分引起的超几何函数的变换方程

L. Villanueva, E. Galapon
{"title":"竞争奇点下的有限部分积分:由有限部分积分引起的超几何函数的变换方程","authors":"L. Villanueva, E. Galapon","doi":"10.1063/5.0038274","DOIUrl":null,"url":null,"abstract":"Finite-part integration is a recently introduced method of evaluating convergent integrals by means of the finite part of divergent integrals [E.A. Galapon, {\\it Proc. R. Soc. A 473, 20160567} (2017)]. Current application of the method involves exact and asymptotic evaluation of the generalized Stieltjes transform $\\int_0^a f(x)/(\\omega + x)^{\\rho} \\, \\mathrm{d}x$ under the assumption that the extension of $f(x)$ in the complex plane is entire. In this paper, the method is elaborated further and extended to accommodate the presence of competing singularities of the complex extension of $f(x)$. Finite part integration is then applied to derive consequences of known Stieltjes integral representations of the Gauss function and the generalized hypergeometric function which involve Stieltjes transforms of functions with complex extensions having singularities in the complex plane. Transformation equations for the Gauss function are obtained from which known transformation equations are shown to follow. Also, building on the results for the Gauss function, transformation equations involving the generalized hypergeometric function $\\,_3F_2$ are derived.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Finite-part integration in the presence of competing singularities: Transformation equations for the hypergeometric functions arising from finite-part integration\",\"authors\":\"L. Villanueva, E. Galapon\",\"doi\":\"10.1063/5.0038274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finite-part integration is a recently introduced method of evaluating convergent integrals by means of the finite part of divergent integrals [E.A. Galapon, {\\\\it Proc. R. Soc. A 473, 20160567} (2017)]. Current application of the method involves exact and asymptotic evaluation of the generalized Stieltjes transform $\\\\int_0^a f(x)/(\\\\omega + x)^{\\\\rho} \\\\, \\\\mathrm{d}x$ under the assumption that the extension of $f(x)$ in the complex plane is entire. In this paper, the method is elaborated further and extended to accommodate the presence of competing singularities of the complex extension of $f(x)$. Finite part integration is then applied to derive consequences of known Stieltjes integral representations of the Gauss function and the generalized hypergeometric function which involve Stieltjes transforms of functions with complex extensions having singularities in the complex plane. Transformation equations for the Gauss function are obtained from which known transformation equations are shown to follow. Also, building on the results for the Gauss function, transformation equations involving the generalized hypergeometric function $\\\\,_3F_2$ are derived.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0038274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0038274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

有限部分积分是近年来引入的一种利用发散积分的有限部分求收敛积分的方法加拉蓬,{\it州r.s. Soc农业工程学报,20160567}(2017)。该方法目前的应用涉及到广义Stieltjes变换$\int_0^a f(x)/(\omega + x)^{\rho} \, \mathrm{d}x$的精确渐近求值,该变换假定$f(x)$在复平面上的扩展是完整的。本文进一步阐述了该方法,并对其进行了扩展,以适应$f(x)$复扩展的竞争奇点的存在。然后应用有限部分积分来推导已知的高斯函数和广义超几何函数的Stieltjes积分表示的结果,这些函数涉及复平面上具有奇异点的复扩展函数的Stieltjes变换。得到了高斯函数的变换方程,由此推导出了已知的变换方程。此外,在高斯函数结果的基础上,推导了涉及广义超几何函数$\,_3F_2$的变换方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-part integration in the presence of competing singularities: Transformation equations for the hypergeometric functions arising from finite-part integration
Finite-part integration is a recently introduced method of evaluating convergent integrals by means of the finite part of divergent integrals [E.A. Galapon, {\it Proc. R. Soc. A 473, 20160567} (2017)]. Current application of the method involves exact and asymptotic evaluation of the generalized Stieltjes transform $\int_0^a f(x)/(\omega + x)^{\rho} \, \mathrm{d}x$ under the assumption that the extension of $f(x)$ in the complex plane is entire. In this paper, the method is elaborated further and extended to accommodate the presence of competing singularities of the complex extension of $f(x)$. Finite part integration is then applied to derive consequences of known Stieltjes integral representations of the Gauss function and the generalized hypergeometric function which involve Stieltjes transforms of functions with complex extensions having singularities in the complex plane. Transformation equations for the Gauss function are obtained from which known transformation equations are shown to follow. Also, building on the results for the Gauss function, transformation equations involving the generalized hypergeometric function $\,_3F_2$ are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信