Jieshan Huang, Xiaojiong Chen, Xudong Li, Jianwei Wang
{"title":"基于芯片的光子图态","authors":"Jieshan Huang, Xiaojiong Chen, Xudong Li, Jianwei Wang","doi":"10.1007/s43673-023-00082-7","DOIUrl":null,"url":null,"abstract":"<div><p>Graph states are one of the most significant classes of entangled states, serving as the quantum resources for quantum technologies. Recently, integrated quantum photonics is becoming a promising platform for quantum information processing, enabling the generation, manipulation, and measurement of photonic quantum states. This article summarizes state-of-the-art experimental progress and advances in the chip-based photonic graph states.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-023-00082-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Chip-based photonic graph states\",\"authors\":\"Jieshan Huang, Xiaojiong Chen, Xudong Li, Jianwei Wang\",\"doi\":\"10.1007/s43673-023-00082-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graph states are one of the most significant classes of entangled states, serving as the quantum resources for quantum technologies. Recently, integrated quantum photonics is becoming a promising platform for quantum information processing, enabling the generation, manipulation, and measurement of photonic quantum states. This article summarizes state-of-the-art experimental progress and advances in the chip-based photonic graph states.</p></div>\",\"PeriodicalId\":100007,\"journal\":{\"name\":\"AAPPS Bulletin\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43673-023-00082-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPPS Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43673-023-00082-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-023-00082-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph states are one of the most significant classes of entangled states, serving as the quantum resources for quantum technologies. Recently, integrated quantum photonics is becoming a promising platform for quantum information processing, enabling the generation, manipulation, and measurement of photonic quantum states. This article summarizes state-of-the-art experimental progress and advances in the chip-based photonic graph states.