{"title":"蛋白质在高压下结晶","authors":"Yoshihisa Suzuki , Gen Sazaki , Satoru Miyashita , Tsutomu Sawada , Katsuhiro Tamura , Hiroshi Komatsu","doi":"10.1016/S0167-4838(01)00355-7","DOIUrl":null,"url":null,"abstract":"<div><p>Pressure is expected to be an important parameter to control protein crystallization, since hydrostatic pressure affects the whole system uniformly and can be changed very rapidly. So far, a lot of studies on protein crystallization have been done. Solubility of protein depends on pressure. For instance, the solubility of tetragonal lysozyme crystal increased with increasing pressure, while that of orthorhombic crystal decreased. The solubility of subtilisin increased with increasing pressure. Crystal growth rates of protein also depend on pressure. The growth rate of glucose isomerase was significantly enhanced with increasing pressure. The growth rate of tetragonal lysozyme crystal and subtilisin decreased with increasing pressure. To study the effects of pressure on the crystallization more precisely and systematically, hen egg white lysozyme is the most suitable protein at this stage, since a lot of data can be used. We focused on growth kinetics under high pressure, since extensive studies on growth kinetics have already been done at atmospheric pressure, and almost all of them have explained the growth mechanisms well. The growth rates of tetragonal lysozyme decreased with pressure under the same supersaturation. This means that the surface growth kinetics significantly depends on pressure. By analyzing the dependence of supersaturation on growth rate, it was found that the increase in average ledge surface energy of the two-dimensional nuclei with pressure explained the decrease in growth rate. At this stage, it is not clear whether the increase in surface energy with increasing pressure is the main reason or not. Fundamental studies on protein crystallization under high pressure will be useful for high pressure crystallography and high pressure protein science.</p></div>","PeriodicalId":100166,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","volume":"1595 1","pages":"Pages 345-356"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0167-4838(01)00355-7","citationCount":"32","resultStr":"{\"title\":\"Protein crystallization under high pressure\",\"authors\":\"Yoshihisa Suzuki , Gen Sazaki , Satoru Miyashita , Tsutomu Sawada , Katsuhiro Tamura , Hiroshi Komatsu\",\"doi\":\"10.1016/S0167-4838(01)00355-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pressure is expected to be an important parameter to control protein crystallization, since hydrostatic pressure affects the whole system uniformly and can be changed very rapidly. So far, a lot of studies on protein crystallization have been done. Solubility of protein depends on pressure. For instance, the solubility of tetragonal lysozyme crystal increased with increasing pressure, while that of orthorhombic crystal decreased. The solubility of subtilisin increased with increasing pressure. Crystal growth rates of protein also depend on pressure. The growth rate of glucose isomerase was significantly enhanced with increasing pressure. The growth rate of tetragonal lysozyme crystal and subtilisin decreased with increasing pressure. To study the effects of pressure on the crystallization more precisely and systematically, hen egg white lysozyme is the most suitable protein at this stage, since a lot of data can be used. We focused on growth kinetics under high pressure, since extensive studies on growth kinetics have already been done at atmospheric pressure, and almost all of them have explained the growth mechanisms well. The growth rates of tetragonal lysozyme decreased with pressure under the same supersaturation. This means that the surface growth kinetics significantly depends on pressure. By analyzing the dependence of supersaturation on growth rate, it was found that the increase in average ledge surface energy of the two-dimensional nuclei with pressure explained the decrease in growth rate. At this stage, it is not clear whether the increase in surface energy with increasing pressure is the main reason or not. Fundamental studies on protein crystallization under high pressure will be useful for high pressure crystallography and high pressure protein science.</p></div>\",\"PeriodicalId\":100166,\"journal\":{\"name\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"volume\":\"1595 1\",\"pages\":\"Pages 345-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0167-4838(01)00355-7\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167483801003557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167483801003557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pressure is expected to be an important parameter to control protein crystallization, since hydrostatic pressure affects the whole system uniformly and can be changed very rapidly. So far, a lot of studies on protein crystallization have been done. Solubility of protein depends on pressure. For instance, the solubility of tetragonal lysozyme crystal increased with increasing pressure, while that of orthorhombic crystal decreased. The solubility of subtilisin increased with increasing pressure. Crystal growth rates of protein also depend on pressure. The growth rate of glucose isomerase was significantly enhanced with increasing pressure. The growth rate of tetragonal lysozyme crystal and subtilisin decreased with increasing pressure. To study the effects of pressure on the crystallization more precisely and systematically, hen egg white lysozyme is the most suitable protein at this stage, since a lot of data can be used. We focused on growth kinetics under high pressure, since extensive studies on growth kinetics have already been done at atmospheric pressure, and almost all of them have explained the growth mechanisms well. The growth rates of tetragonal lysozyme decreased with pressure under the same supersaturation. This means that the surface growth kinetics significantly depends on pressure. By analyzing the dependence of supersaturation on growth rate, it was found that the increase in average ledge surface energy of the two-dimensional nuclei with pressure explained the decrease in growth rate. At this stage, it is not clear whether the increase in surface energy with increasing pressure is the main reason or not. Fundamental studies on protein crystallization under high pressure will be useful for high pressure crystallography and high pressure protein science.