{"title":"UHPLC-ESI-Q-ToF法测定红葡萄酒原花青素的序列","authors":"Adelaine Delcambre, Yann André, C. Saucier","doi":"10.17145/JAB.15.009","DOIUrl":null,"url":null,"abstract":"Phenolic compounds are considered as secondary metabolites and are widespread in the plant kingdom [1, 2]. These compounds are present in vegetables [3], fruits [4], tea [5] and red wine [6-8]. They are known for their oxidative defense [9], their ability to reduce certain cancers [10, 11], their preventive activity against infectious [12] and degenerative diseases [13,14]. Among these phenolic compounds, the proanthocyanidins (PAs) or flavan-3-ols represent a significant family and they play an important role during wine making [15] and red wine tasting [16]. Four monomeric units [17, 18] are present in the grape and red wine: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epicatechin-3-O-gallate (ECG) (Figure 1). These monomers give rise to the formation of oligomers and polymers via an interflavan bond between C4 of the top unit and C6 or C8 [4, 19] of the lower unit and sometimes an additional ether bond between C2 of the top unit and C5 or C7 of the lower unit [20, 21]. (-)-epicatechin (EC), (+)-catechin (C) and (-)-epicatechin-3-O-gallate (ECG) are mainly located in grape seeds, whereas the monomeric unit (-)-epigallocatechin (EGC) is only present in grape skins [22, 23]. These compounds present in red wine are involved in the astringency phenomenon [16, 17], the bitterness, the body [24], the wine aging [25] and the organoleptic properties [26]. These proanthocyanidins have been studied by analytical method such as high-performance liquid chromatography (HPLC) [27], mass spectrometry coupled with UHPLC system [28], and nuclear magnetic resonance (NMR) [29]. In the current study, we first describe the theoretical possibilities to form oligomers with A and B-type interflavan bond. In a second part, we describe specific fragmentation pathways allowing the sequencing of proanthocyanidins in red wine using a UHPLC-ESI-Q-ToF. JOURNAL OF APPLIED BIOANALYSIS, Apr. 2015, p. 46-54. http://dx.doi.org/10.17145/jab.15.009 (ISSN 2405-710X) Vol. 1, No. 2","PeriodicalId":15014,"journal":{"name":"Journal of Applied Bioanalysis","volume":"26 1","pages":"46-54"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sequencing of red wine proanthocyanidins by UHPLC-ESI-Q-ToF\",\"authors\":\"Adelaine Delcambre, Yann André, C. Saucier\",\"doi\":\"10.17145/JAB.15.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenolic compounds are considered as secondary metabolites and are widespread in the plant kingdom [1, 2]. These compounds are present in vegetables [3], fruits [4], tea [5] and red wine [6-8]. They are known for their oxidative defense [9], their ability to reduce certain cancers [10, 11], their preventive activity against infectious [12] and degenerative diseases [13,14]. Among these phenolic compounds, the proanthocyanidins (PAs) or flavan-3-ols represent a significant family and they play an important role during wine making [15] and red wine tasting [16]. Four monomeric units [17, 18] are present in the grape and red wine: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epicatechin-3-O-gallate (ECG) (Figure 1). These monomers give rise to the formation of oligomers and polymers via an interflavan bond between C4 of the top unit and C6 or C8 [4, 19] of the lower unit and sometimes an additional ether bond between C2 of the top unit and C5 or C7 of the lower unit [20, 21]. (-)-epicatechin (EC), (+)-catechin (C) and (-)-epicatechin-3-O-gallate (ECG) are mainly located in grape seeds, whereas the monomeric unit (-)-epigallocatechin (EGC) is only present in grape skins [22, 23]. These compounds present in red wine are involved in the astringency phenomenon [16, 17], the bitterness, the body [24], the wine aging [25] and the organoleptic properties [26]. These proanthocyanidins have been studied by analytical method such as high-performance liquid chromatography (HPLC) [27], mass spectrometry coupled with UHPLC system [28], and nuclear magnetic resonance (NMR) [29]. In the current study, we first describe the theoretical possibilities to form oligomers with A and B-type interflavan bond. In a second part, we describe specific fragmentation pathways allowing the sequencing of proanthocyanidins in red wine using a UHPLC-ESI-Q-ToF. JOURNAL OF APPLIED BIOANALYSIS, Apr. 2015, p. 46-54. http://dx.doi.org/10.17145/jab.15.009 (ISSN 2405-710X) Vol. 1, No. 2\",\"PeriodicalId\":15014,\"journal\":{\"name\":\"Journal of Applied Bioanalysis\",\"volume\":\"26 1\",\"pages\":\"46-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Bioanalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17145/JAB.15.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Bioanalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17145/JAB.15.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
酚类化合物被认为是次生代谢物,在植物界广泛存在[1,2]。这些化合物存在于蔬菜[3]、水果[4]、茶[5]和红酒[6-8]中。众所周知,它们具有氧化防御[9]、减少某些癌症的能力[10,11]、对感染性疾病[12]和退行性疾病的预防作用[13,14]。在这些酚类化合物中,原花青素(PAs)或黄烷-3-醇是一个重要的家族,它们在酿酒[15]和红葡萄酒品鉴[16]中发挥着重要作用。四个单体的单位(17、18)存在于葡萄和红酒:(+)儿茶素(C),(-)表儿茶素(EC),(-)儿茶素(EGC)和(-)-epicatechin-3-O-gallate (ECG)(图1)。这些单体产生的形成低聚物和聚合物通过interflavan债券之间的C4的单位和C6、C8(4、19)的单位,有时一个额外的醚键之间C2的单位和C5或C7的单位(20、21)。(-)-表儿茶素(EC)、(+)-儿茶素(C)和(-)-表儿茶素-3- o -没食子酸酯(ECG)主要存在于葡萄籽中,而单体单位(-)-表没食子儿茶素(EGC)仅存在于葡萄皮中[22,23]。这些存在于红葡萄酒中的化合物与涩味现象[16,17]、苦味、酒体[24]、葡萄酒陈酿[25]和感官特性[26]有关。这些原花青素已通过高效液相色谱(HPLC)[27]、质谱联用UHPLC系统[28]、核磁共振(NMR)[29]等分析方法进行了研究。在目前的研究中,我们首先描述了形成具有A型和b型间键的低聚物的理论可能性。在第二部分中,我们描述了使用UHPLC-ESI-Q-ToF对红葡萄酒中原花青素进行测序的特定裂解途径。应用生物分析学报,2015,p. 46-54。http://dx.doi.org/10.17145/jab.15.009 (ISSN 2405-710X)第一卷,第2期
Sequencing of red wine proanthocyanidins by UHPLC-ESI-Q-ToF
Phenolic compounds are considered as secondary metabolites and are widespread in the plant kingdom [1, 2]. These compounds are present in vegetables [3], fruits [4], tea [5] and red wine [6-8]. They are known for their oxidative defense [9], their ability to reduce certain cancers [10, 11], their preventive activity against infectious [12] and degenerative diseases [13,14]. Among these phenolic compounds, the proanthocyanidins (PAs) or flavan-3-ols represent a significant family and they play an important role during wine making [15] and red wine tasting [16]. Four monomeric units [17, 18] are present in the grape and red wine: (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC) and (-)-epicatechin-3-O-gallate (ECG) (Figure 1). These monomers give rise to the formation of oligomers and polymers via an interflavan bond between C4 of the top unit and C6 or C8 [4, 19] of the lower unit and sometimes an additional ether bond between C2 of the top unit and C5 or C7 of the lower unit [20, 21]. (-)-epicatechin (EC), (+)-catechin (C) and (-)-epicatechin-3-O-gallate (ECG) are mainly located in grape seeds, whereas the monomeric unit (-)-epigallocatechin (EGC) is only present in grape skins [22, 23]. These compounds present in red wine are involved in the astringency phenomenon [16, 17], the bitterness, the body [24], the wine aging [25] and the organoleptic properties [26]. These proanthocyanidins have been studied by analytical method such as high-performance liquid chromatography (HPLC) [27], mass spectrometry coupled with UHPLC system [28], and nuclear magnetic resonance (NMR) [29]. In the current study, we first describe the theoretical possibilities to form oligomers with A and B-type interflavan bond. In a second part, we describe specific fragmentation pathways allowing the sequencing of proanthocyanidins in red wine using a UHPLC-ESI-Q-ToF. JOURNAL OF APPLIED BIOANALYSIS, Apr. 2015, p. 46-54. http://dx.doi.org/10.17145/jab.15.009 (ISSN 2405-710X) Vol. 1, No. 2