Roberto Pérez-Rodríguez, Rafael Lorenzo-Martin, Carlos A. Trinchet-Varela, Rolando E. Simeón-Monet, Jhonattan Miranda, D. Cortés, Arturo Molina
{"title":"将基于挑战的学习、基于项目的学习和计算机辅助技术融入工业工程教学:迈向可持续发展框架","authors":"Roberto Pérez-Rodríguez, Rafael Lorenzo-Martin, Carlos A. Trinchet-Varela, Rolando E. Simeón-Monet, Jhonattan Miranda, D. Cortés, Arturo Molina","doi":"10.15507/1991-9468.107.026.202202.198-215","DOIUrl":null,"url":null,"abstract":"Introduction. Teaching industrial engineering in the second decade of the 21st century requires problem-solving and decision-making competencies oriented towards sustainable development. The growth of information metrics, the Internet of Things, virtual and augmented reality, and Artificial Intelligence bring more diverse, complex and imprecise challenges. This article aims to show a framework employing Challenge-based-learning, Project-based-learning and Computer-Aided technologies as dynamic resources supporting the comprehensive teaching of industrial engineers for industrial solutions oriented towards sustainable development.\nMaterials and Methods. Our research involved a systemic analysis of the framework variables, the stages, and the partial results of its application in three academic years research. We selected several case studies to evaluate the professional competencies related to Sustainable Development Goals of industrial engineering students, using active learning tools integrated with Computer-Aided technologies. These cases illustrated the acquisition of Sustainable Development Goals competencies. Two simultaneous Latin American scenarios were examined (Mexico and Cuba). Results. Its main contribution is an appropriate framework for using Challenge-based-learning, Project-based-learning and Computer-Aided technologies as resources to develop professional competencies in industrial engineering and sustainable development. The control groups results demonstrate the utility, relevance, and accuracy of the proposed framework.\nResults. Its main contribution is an appropriate framework for using Challenge-based-learning, Project-based-learning and Computer-Aided technologies as resources to develop professional competencies in industrial engineering and sustainable development. The control groups results demonstrate the utility, relevance, and accuracy of the proposed framework.\nDiscussion and Conclusion. The study of the theoretical and methodological components of teaching Industrial Engineering, emphasizing competencies, at two universities in Latin American countries revealed the need to understand Computer-Aided technologies as a complex process. The proposed framework considers Computer-Aided technologies per the typologies of selected competencies integrated into the curricular design, including Challenge-based-learning and Project-based-learning, oriented toward the Sustainable Development Goals. The authors’ conclusions contribute to the development of active learning methods in engineering, supported by the application of CAD/CAM/CAE tools and focused on the fulfillment of sustainable development objectives. The materials of the article will be useful for the teaching of Industrial Engineering from a digital transformation perspective, contextualized in sustainable development environments.","PeriodicalId":53450,"journal":{"name":"Integration of Education","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrating Challenge-Based-Learning, Project-Based-Learning, and Computer-Aided Technologies into Industrial Engineering Teaching: Towards a Sustainable Development Framework\",\"authors\":\"Roberto Pérez-Rodríguez, Rafael Lorenzo-Martin, Carlos A. Trinchet-Varela, Rolando E. Simeón-Monet, Jhonattan Miranda, D. Cortés, Arturo Molina\",\"doi\":\"10.15507/1991-9468.107.026.202202.198-215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. Teaching industrial engineering in the second decade of the 21st century requires problem-solving and decision-making competencies oriented towards sustainable development. The growth of information metrics, the Internet of Things, virtual and augmented reality, and Artificial Intelligence bring more diverse, complex and imprecise challenges. This article aims to show a framework employing Challenge-based-learning, Project-based-learning and Computer-Aided technologies as dynamic resources supporting the comprehensive teaching of industrial engineers for industrial solutions oriented towards sustainable development.\\nMaterials and Methods. Our research involved a systemic analysis of the framework variables, the stages, and the partial results of its application in three academic years research. We selected several case studies to evaluate the professional competencies related to Sustainable Development Goals of industrial engineering students, using active learning tools integrated with Computer-Aided technologies. These cases illustrated the acquisition of Sustainable Development Goals competencies. Two simultaneous Latin American scenarios were examined (Mexico and Cuba). Results. Its main contribution is an appropriate framework for using Challenge-based-learning, Project-based-learning and Computer-Aided technologies as resources to develop professional competencies in industrial engineering and sustainable development. The control groups results demonstrate the utility, relevance, and accuracy of the proposed framework.\\nResults. Its main contribution is an appropriate framework for using Challenge-based-learning, Project-based-learning and Computer-Aided technologies as resources to develop professional competencies in industrial engineering and sustainable development. The control groups results demonstrate the utility, relevance, and accuracy of the proposed framework.\\nDiscussion and Conclusion. The study of the theoretical and methodological components of teaching Industrial Engineering, emphasizing competencies, at two universities in Latin American countries revealed the need to understand Computer-Aided technologies as a complex process. The proposed framework considers Computer-Aided technologies per the typologies of selected competencies integrated into the curricular design, including Challenge-based-learning and Project-based-learning, oriented toward the Sustainable Development Goals. The authors’ conclusions contribute to the development of active learning methods in engineering, supported by the application of CAD/CAM/CAE tools and focused on the fulfillment of sustainable development objectives. The materials of the article will be useful for the teaching of Industrial Engineering from a digital transformation perspective, contextualized in sustainable development environments.\",\"PeriodicalId\":53450,\"journal\":{\"name\":\"Integration of Education\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integration of Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15507/1991-9468.107.026.202202.198-215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration of Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15507/1991-9468.107.026.202202.198-215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Integrating Challenge-Based-Learning, Project-Based-Learning, and Computer-Aided Technologies into Industrial Engineering Teaching: Towards a Sustainable Development Framework
Introduction. Teaching industrial engineering in the second decade of the 21st century requires problem-solving and decision-making competencies oriented towards sustainable development. The growth of information metrics, the Internet of Things, virtual and augmented reality, and Artificial Intelligence bring more diverse, complex and imprecise challenges. This article aims to show a framework employing Challenge-based-learning, Project-based-learning and Computer-Aided technologies as dynamic resources supporting the comprehensive teaching of industrial engineers for industrial solutions oriented towards sustainable development.
Materials and Methods. Our research involved a systemic analysis of the framework variables, the stages, and the partial results of its application in three academic years research. We selected several case studies to evaluate the professional competencies related to Sustainable Development Goals of industrial engineering students, using active learning tools integrated with Computer-Aided technologies. These cases illustrated the acquisition of Sustainable Development Goals competencies. Two simultaneous Latin American scenarios were examined (Mexico and Cuba). Results. Its main contribution is an appropriate framework for using Challenge-based-learning, Project-based-learning and Computer-Aided technologies as resources to develop professional competencies in industrial engineering and sustainable development. The control groups results demonstrate the utility, relevance, and accuracy of the proposed framework.
Results. Its main contribution is an appropriate framework for using Challenge-based-learning, Project-based-learning and Computer-Aided technologies as resources to develop professional competencies in industrial engineering and sustainable development. The control groups results demonstrate the utility, relevance, and accuracy of the proposed framework.
Discussion and Conclusion. The study of the theoretical and methodological components of teaching Industrial Engineering, emphasizing competencies, at two universities in Latin American countries revealed the need to understand Computer-Aided technologies as a complex process. The proposed framework considers Computer-Aided technologies per the typologies of selected competencies integrated into the curricular design, including Challenge-based-learning and Project-based-learning, oriented toward the Sustainable Development Goals. The authors’ conclusions contribute to the development of active learning methods in engineering, supported by the application of CAD/CAM/CAE tools and focused on the fulfillment of sustainable development objectives. The materials of the article will be useful for the teaching of Industrial Engineering from a digital transformation perspective, contextualized in sustainable development environments.
期刊介绍:
The journal was established by the resolution of the Russian Federation State Committee on Higher Education, the Ministry of Education of the Russian Federation, the State Assembly and Government of Republic of Mordovia of 12 July 1995. Integration of Education publishes original researches in the field of integration of education. The names and content of the Journal’s sections correspond to the fields of science and groups of specialties of scientific workers in accordance with the Nomenclature of Scientific Specialties in which academic degrees are awarded: 19.00.00 PSYCHOLOGY 13.00.00 PEDAGOGY 22.00.00 SOCIOLOGY