采用基于微控制器的微控制器,采用低电压分布网络的三相位负载保护和监测系统

Rifdian Indrianto, H. Hartono, Kustori Kustori, S. Hariyadi, Suhanto Suhanto
{"title":"采用基于微控制器的微控制器,采用低电压分布网络的三相位负载保护和监测系统","authors":"Rifdian Indrianto, H. Hartono, Kustori Kustori, S. Hariyadi, Suhanto Suhanto","doi":"10.46491/jp.v8i2.1502","DOIUrl":null,"url":null,"abstract":"Three-phase electrical systems are widely used by industrial consumers because of their large power requirements. The 3-phase system is more economical in the delivery of electrical power than the single-phase system because the conductor used is smaller for the same power. A 3-phase system is said to be balanced if the load used is also balanced between the three R-S-T phases. However, in practice the balance of the three phases is very difficult to achieve because the electrical load of each house or industry is not necessarily identical. As a result of this imbalance between the R-S-T phases can cause damage to electronic equipment that uses 3-phase electricity if used continuously.According to PUIL 2011 the unbalance distribution system includes an unbalanced current between phases with provisions up to a tolerance value of 10%. In a 3 phase electrical distribution system, there will often be load imbalances. This is due to the addition or use of electrical loads that do not pay attention to the imbalance in the system.For this reason, in this study, a tool that uses the PZEM-004T sensor, Wemos D1 mini module, and Android Studio was created which can allow for remote monitoring using electronic devices that have installed applications that have been created. when an error occurs, the \"reset\" button on the monitoring application is used to reset the protection to restore the device. The current difference in the avometer is 1.48A and the sensor is 1.46A and the current flowing to the load is written 1.88A. The contactor works when the relay receives a command from the Arduino nano with a fast time, namely: 1.60 seconds on the first try, 1.72 seconds on the second experiment, and 1.68 seconds on the third experiment.","PeriodicalId":31665,"journal":{"name":"Jurnal Penelitian","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SISTEM PROTEKSI DAN MONITORING KESEIMBANGAN BEBAN TIGA FASA PADA JARINGAN DISTRIBUSI TEGANGAN RENDAH MENGGUNAKAN MIKROKONTROLER BERBASIS IOT\",\"authors\":\"Rifdian Indrianto, H. Hartono, Kustori Kustori, S. Hariyadi, Suhanto Suhanto\",\"doi\":\"10.46491/jp.v8i2.1502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-phase electrical systems are widely used by industrial consumers because of their large power requirements. The 3-phase system is more economical in the delivery of electrical power than the single-phase system because the conductor used is smaller for the same power. A 3-phase system is said to be balanced if the load used is also balanced between the three R-S-T phases. However, in practice the balance of the three phases is very difficult to achieve because the electrical load of each house or industry is not necessarily identical. As a result of this imbalance between the R-S-T phases can cause damage to electronic equipment that uses 3-phase electricity if used continuously.According to PUIL 2011 the unbalance distribution system includes an unbalanced current between phases with provisions up to a tolerance value of 10%. In a 3 phase electrical distribution system, there will often be load imbalances. This is due to the addition or use of electrical loads that do not pay attention to the imbalance in the system.For this reason, in this study, a tool that uses the PZEM-004T sensor, Wemos D1 mini module, and Android Studio was created which can allow for remote monitoring using electronic devices that have installed applications that have been created. when an error occurs, the \\\"reset\\\" button on the monitoring application is used to reset the protection to restore the device. The current difference in the avometer is 1.48A and the sensor is 1.46A and the current flowing to the load is written 1.88A. The contactor works when the relay receives a command from the Arduino nano with a fast time, namely: 1.60 seconds on the first try, 1.72 seconds on the second experiment, and 1.68 seconds on the third experiment.\",\"PeriodicalId\":31665,\"journal\":{\"name\":\"Jurnal Penelitian\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Penelitian\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46491/jp.v8i2.1502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Penelitian","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46491/jp.v8i2.1502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三相电力系统因其功率要求大而被工业用户广泛使用。三相系统在输送电力方面比单相系统更经济,因为相同功率使用的导体更小。如果使用的负载在三个R-S-T相之间也平衡,则称三相系统是平衡的。然而,在实践中,这三个阶段的平衡是很难实现的,因为每个家庭或行业的电力负荷不一定相同。由于R-S-T相之间的这种不平衡,如果连续使用,可能会对使用三相电的电子设备造成损坏。根据PUIL 2011,不平衡分配系统包括相位之间的不平衡电流,规定的容差值高达10%。在三相配电系统中,经常会出现负荷不平衡现象。这是由于增加或使用不注意系统不平衡的电气负载造成的。因此,在本研究中,创建了一个使用pzm - 004t传感器、Wemos D1迷你模块和Android Studio的工具,该工具可以允许使用安装了已创建的应用程序的电子设备进行远程监控。当发生错误时,使用监控应用程序上的“重置”按钮重置保护以恢复设备。电压计的电流差为1.48A,传感器的电流差为1.46A,流向负载的电流写为1.88A。接触器在继电器接收到Arduino纳米指令时工作,指令时间快,即第一次1.60秒,第二次1.72秒,第三次1.68秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SISTEM PROTEKSI DAN MONITORING KESEIMBANGAN BEBAN TIGA FASA PADA JARINGAN DISTRIBUSI TEGANGAN RENDAH MENGGUNAKAN MIKROKONTROLER BERBASIS IOT
Three-phase electrical systems are widely used by industrial consumers because of their large power requirements. The 3-phase system is more economical in the delivery of electrical power than the single-phase system because the conductor used is smaller for the same power. A 3-phase system is said to be balanced if the load used is also balanced between the three R-S-T phases. However, in practice the balance of the three phases is very difficult to achieve because the electrical load of each house or industry is not necessarily identical. As a result of this imbalance between the R-S-T phases can cause damage to electronic equipment that uses 3-phase electricity if used continuously.According to PUIL 2011 the unbalance distribution system includes an unbalanced current between phases with provisions up to a tolerance value of 10%. In a 3 phase electrical distribution system, there will often be load imbalances. This is due to the addition or use of electrical loads that do not pay attention to the imbalance in the system.For this reason, in this study, a tool that uses the PZEM-004T sensor, Wemos D1 mini module, and Android Studio was created which can allow for remote monitoring using electronic devices that have installed applications that have been created. when an error occurs, the "reset" button on the monitoring application is used to reset the protection to restore the device. The current difference in the avometer is 1.48A and the sensor is 1.46A and the current flowing to the load is written 1.88A. The contactor works when the relay receives a command from the Arduino nano with a fast time, namely: 1.60 seconds on the first try, 1.72 seconds on the second experiment, and 1.68 seconds on the third experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
9
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信