{"title":"最优多元混合的遗传算法","authors":"Giacinto Angelo Sgarro, L. Grilli","doi":"10.12988/ams.2023.917307","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm to find an optimal mixture that is as close as possible to an ideal solution, starting from a set of elements (items) described by a set of variables (features). This class of optimization problems can be tackled through traditional approaches belonging to the field of operations research (OR) or even through meta-heuristics techniques belonging to the field of artificial intelligence (AI). In order to present an artificial intelligence perspective, this paper uses a genetic algorithm (GA) model which proves its consistency through the comparison with a linear programming (LP) solver on a set of 8-items 5-features experiments. Results show that the proposed GA converges towards the global optimum and provides competitive results","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic algorithm for optimal multivariate mixture\",\"authors\":\"Giacinto Angelo Sgarro, L. Grilli\",\"doi\":\"10.12988/ams.2023.917307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm to find an optimal mixture that is as close as possible to an ideal solution, starting from a set of elements (items) described by a set of variables (features). This class of optimization problems can be tackled through traditional approaches belonging to the field of operations research (OR) or even through meta-heuristics techniques belonging to the field of artificial intelligence (AI). In order to present an artificial intelligence perspective, this paper uses a genetic algorithm (GA) model which proves its consistency through the comparison with a linear programming (LP) solver on a set of 8-items 5-features experiments. Results show that the proposed GA converges towards the global optimum and provides competitive results\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ams.2023.917307\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ams.2023.917307","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Genetic algorithm for optimal multivariate mixture
This paper proposes an algorithm to find an optimal mixture that is as close as possible to an ideal solution, starting from a set of elements (items) described by a set of variables (features). This class of optimization problems can be tackled through traditional approaches belonging to the field of operations research (OR) or even through meta-heuristics techniques belonging to the field of artificial intelligence (AI). In order to present an artificial intelligence perspective, this paper uses a genetic algorithm (GA) model which proves its consistency through the comparison with a linear programming (LP) solver on a set of 8-items 5-features experiments. Results show that the proposed GA converges towards the global optimum and provides competitive results