{"title":"最优多元混合的遗传算法","authors":"Giacinto Angelo Sgarro, L. Grilli","doi":"10.12988/ams.2023.917307","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm to find an optimal mixture that is as close as possible to an ideal solution, starting from a set of elements (items) described by a set of variables (features). This class of optimization problems can be tackled through traditional approaches belonging to the field of operations research (OR) or even through meta-heuristics techniques belonging to the field of artificial intelligence (AI). In order to present an artificial intelligence perspective, this paper uses a genetic algorithm (GA) model which proves its consistency through the comparison with a linear programming (LP) solver on a set of 8-items 5-features experiments. Results show that the proposed GA converges towards the global optimum and provides competitive results","PeriodicalId":49860,"journal":{"name":"Mathematical Models & Methods in Applied Sciences","volume":"10 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic algorithm for optimal multivariate mixture\",\"authors\":\"Giacinto Angelo Sgarro, L. Grilli\",\"doi\":\"10.12988/ams.2023.917307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm to find an optimal mixture that is as close as possible to an ideal solution, starting from a set of elements (items) described by a set of variables (features). This class of optimization problems can be tackled through traditional approaches belonging to the field of operations research (OR) or even through meta-heuristics techniques belonging to the field of artificial intelligence (AI). In order to present an artificial intelligence perspective, this paper uses a genetic algorithm (GA) model which proves its consistency through the comparison with a linear programming (LP) solver on a set of 8-items 5-features experiments. Results show that the proposed GA converges towards the global optimum and provides competitive results\",\"PeriodicalId\":49860,\"journal\":{\"name\":\"Mathematical Models & Methods in Applied Sciences\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models & Methods in Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ams.2023.917307\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models & Methods in Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ams.2023.917307","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Genetic algorithm for optimal multivariate mixture
This paper proposes an algorithm to find an optimal mixture that is as close as possible to an ideal solution, starting from a set of elements (items) described by a set of variables (features). This class of optimization problems can be tackled through traditional approaches belonging to the field of operations research (OR) or even through meta-heuristics techniques belonging to the field of artificial intelligence (AI). In order to present an artificial intelligence perspective, this paper uses a genetic algorithm (GA) model which proves its consistency through the comparison with a linear programming (LP) solver on a set of 8-items 5-features experiments. Results show that the proposed GA converges towards the global optimum and provides competitive results
期刊介绍:
The purpose of this journal is to provide a medium of exchange for scientists engaged in applied sciences (physics, mathematical physics, natural, and technological sciences) where there exists a non-trivial interplay between mathematics, mathematical modelling of real systems and mathematical and computer methods oriented towards the qualitative and quantitative analysis of real physical systems.
The principal areas of interest of this journal are the following:
1.Mathematical modelling of systems in applied sciences;
2.Mathematical methods for the qualitative and quantitative analysis of models of mathematical physics and technological sciences;
3.Numerical and computer treatment of mathematical models or real systems.
Special attention will be paid to the analysis of nonlinearities and stochastic aspects.
Within the above limitation, scientists in all fields which employ mathematics are encouraged to submit research and review papers to the journal. Both theoretical and applied papers will be considered for publication. High quality, novelty of the content and potential for the applications to modern problems in applied sciences and technology will be the guidelines for the selection of papers to be published in the journal. This journal publishes only articles with original and innovative contents.
Book reviews, announcements and tutorial articles will be featured occasionally.