G. Vainikko
{"title":"哪些函数是分数可微的","authors":"G. Vainikko","doi":"10.4171/ZAA/1574","DOIUrl":null,"url":null,"abstract":"s of MMA2015, May 26–29, 2015, Sigulda, Latvia c © 2015 WHICH FUNCTIONS ARE FRACTIONALLY DIFFERENTIABLE? G. VAINIKKO Institute of Mathematics, University of Tartu Liivi 2, Tartu 50409, Estonia E-mail: gennadi.vainikko@ut.ee We define a fractional differentiation operator as the inverse to Riemann-Liouville integral operator, and examine the relations of this most natural concept with more popular fractional differentiation operators of Riemann-Liouville and Caputo. Our main result concerns the description of the range of Riemann-Liouville integral operator in the space of continuous functions. As the result we can describe, in particular, the class of functions that are differentiable in the sense of Riemann-Liouville and Caputo. Also the Abel equation with coefficient function of two variables can be examined on the basis of Riemann-Liouville’s operator inversion.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Which Functions are Fractionally Differentiable\",\"authors\":\"G. Vainikko\",\"doi\":\"10.4171/ZAA/1574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"s of MMA2015, May 26–29, 2015, Sigulda, Latvia c © 2015 WHICH FUNCTIONS ARE FRACTIONALLY DIFFERENTIABLE? G. VAINIKKO Institute of Mathematics, University of Tartu Liivi 2, Tartu 50409, Estonia E-mail: gennadi.vainikko@ut.ee We define a fractional differentiation operator as the inverse to Riemann-Liouville integral operator, and examine the relations of this most natural concept with more popular fractional differentiation operators of Riemann-Liouville and Caputo. Our main result concerns the description of the range of Riemann-Liouville integral operator in the space of continuous functions. As the result we can describe, in particular, the class of functions that are differentiable in the sense of Riemann-Liouville and Caputo. Also the Abel equation with coefficient function of two variables can be examined on the basis of Riemann-Liouville’s operator inversion.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ZAA/1574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Which Functions are Fractionally Differentiable
s of MMA2015, May 26–29, 2015, Sigulda, Latvia c © 2015 WHICH FUNCTIONS ARE FRACTIONALLY DIFFERENTIABLE? G. VAINIKKO Institute of Mathematics, University of Tartu Liivi 2, Tartu 50409, Estonia E-mail: gennadi.vainikko@ut.ee We define a fractional differentiation operator as the inverse to Riemann-Liouville integral operator, and examine the relations of this most natural concept with more popular fractional differentiation operators of Riemann-Liouville and Caputo. Our main result concerns the description of the range of Riemann-Liouville integral operator in the space of continuous functions. As the result we can describe, in particular, the class of functions that are differentiable in the sense of Riemann-Liouville and Caputo. Also the Abel equation with coefficient function of two variables can be examined on the basis of Riemann-Liouville’s operator inversion.