物联网安全元件性能分析

Mario Noseda, Lea Zimmerli, Tobias Schläpfer, Andreas Rüst
{"title":"物联网安全元件性能分析","authors":"Mario Noseda, Lea Zimmerli, Tobias Schläpfer, Andreas Rüst","doi":"10.3390/iot3010001","DOIUrl":null,"url":null,"abstract":"New protocol stacks provide wireless IPv6 connectivity down to low power embedded IoT devices. From a security point of view, this leads to high exposure of such IoT devices. Consequently, even though they are highly resource-constrained, these IoT devices need to fulfil similar security requirements as conventional computers. The challenge is to leverage well-known cybersecurity techniques for such devices without dramatically increasing power consumption (and therefore reducing battery lifetime) or the cost regarding memory sizes and required processor performance. Various semiconductor vendors have introduced dedicated hardware devices, so-called secure elements that address these cryptographic challenges. Secure elements provide tamper-resistant memory and hardware-accelerated cryptographic computation support. Moreover, they can be used for mutual authentication with peers, ensuring data integrity and confidentiality, and various other security-related use cases. Nevertheless, publicly available performance figures on energy consumption and execution times are scarce. This paper introduces the concept of secure elements and provides a measurement setup for selected individual cryptographic primitives and a DTLS handshake over CoAPs in a realistic use case. Consequently, the paper presents quantitative results for the performance of five secure elements. Based on these results, we discuss the characteristics of the individual secure elements and supply developers with the information needed to select a suitable secure element for a specific application.","PeriodicalId":6745,"journal":{"name":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance Analysis of Secure Elements for IoT\",\"authors\":\"Mario Noseda, Lea Zimmerli, Tobias Schläpfer, Andreas Rüst\",\"doi\":\"10.3390/iot3010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New protocol stacks provide wireless IPv6 connectivity down to low power embedded IoT devices. From a security point of view, this leads to high exposure of such IoT devices. Consequently, even though they are highly resource-constrained, these IoT devices need to fulfil similar security requirements as conventional computers. The challenge is to leverage well-known cybersecurity techniques for such devices without dramatically increasing power consumption (and therefore reducing battery lifetime) or the cost regarding memory sizes and required processor performance. Various semiconductor vendors have introduced dedicated hardware devices, so-called secure elements that address these cryptographic challenges. Secure elements provide tamper-resistant memory and hardware-accelerated cryptographic computation support. Moreover, they can be used for mutual authentication with peers, ensuring data integrity and confidentiality, and various other security-related use cases. Nevertheless, publicly available performance figures on energy consumption and execution times are scarce. This paper introduces the concept of secure elements and provides a measurement setup for selected individual cryptographic primitives and a DTLS handshake over CoAPs in a realistic use case. Consequently, the paper presents quantitative results for the performance of five secure elements. Based on these results, we discuss the characteristics of the individual secure elements and supply developers with the information needed to select a suitable secure element for a specific application.\",\"PeriodicalId\":6745,\"journal\":{\"name\":\"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/iot3010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0&IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/iot3010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

新的协议栈为低功耗嵌入式物联网设备提供无线IPv6连接。从安全的角度来看,这导致了此类物联网设备的高度暴露。因此,尽管这些物联网设备资源非常有限,但它们需要满足与传统计算机类似的安全要求。面临的挑战是,如何在不大幅增加功耗(从而缩短电池寿命)或内存大小和所需处理器性能方面的成本的情况下,为此类设备利用众所周知的网络安全技术。各种半导体供应商已经推出了专用硬件设备,即所谓的安全元件,以解决这些加密挑战。安全元件提供防篡改内存和硬件加速加密计算支持。此外,它们还可以用于与对等体的相互身份验证,确保数据完整性和机密性,以及各种其他与安全相关的用例。然而,关于能耗和执行时间的公开性能数据很少。本文介绍了安全元素的概念,并在实际用例中为选定的单个加密原语和coap上的DTLS握手提供了测量设置。因此,本文给出了五种安全元件性能的定量结果。基于这些结果,我们将讨论各个安全元素的特征,并为开发人员提供为特定应用程序选择合适的安全元素所需的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Secure Elements for IoT
New protocol stacks provide wireless IPv6 connectivity down to low power embedded IoT devices. From a security point of view, this leads to high exposure of such IoT devices. Consequently, even though they are highly resource-constrained, these IoT devices need to fulfil similar security requirements as conventional computers. The challenge is to leverage well-known cybersecurity techniques for such devices without dramatically increasing power consumption (and therefore reducing battery lifetime) or the cost regarding memory sizes and required processor performance. Various semiconductor vendors have introduced dedicated hardware devices, so-called secure elements that address these cryptographic challenges. Secure elements provide tamper-resistant memory and hardware-accelerated cryptographic computation support. Moreover, they can be used for mutual authentication with peers, ensuring data integrity and confidentiality, and various other security-related use cases. Nevertheless, publicly available performance figures on energy consumption and execution times are scarce. This paper introduces the concept of secure elements and provides a measurement setup for selected individual cryptographic primitives and a DTLS handshake over CoAPs in a realistic use case. Consequently, the paper presents quantitative results for the performance of five secure elements. Based on these results, we discuss the characteristics of the individual secure elements and supply developers with the information needed to select a suitable secure element for a specific application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信