{"title":"基于k -均值矢量量化的自适应差分进化和模式搜索SAR图像压缩","authors":"K. Chiranjeevi, U. Jena","doi":"10.5566/IAS.1611","DOIUrl":null,"url":null,"abstract":"A novel Vector Quantization (VQ) technique for encoding the Bi-orthogonal wavelet decomposed image using hybrid Adaptive Differential Evolution (ADE) and a Pattern Search optimization algorithm (hADEPS) is proposed. ADE is a modified version of Differential Evolution (DE) in which mutation operation is made adaptive based on the ascending/descending objective function or fitness value and tested on twelve numerical benchmark functions and the results are compared and proved better than Genetic Algorithm (GA), ordinary DE and FA. ADE is a global optimizer which explore the global search space and PS is local optimizer which exploit a local search space, so ADE is hybridized with PS. In the proposed VQ, in a codebook of codewords, 62.5% of codewords are assigned and optimized for the approximation coefficients and the remaining 37.5% are equally assigned to horizontal, vertical and diagonal coefficients. The superiority of proposed hybrid Adaptive Differential Evolution and Pattern Search (hADE-PS) optimized vector quantization over DE is demonstrated. The proposed technique is compared with DE based VQ and ADE based quantization and with standard LBG algorithm. Results show higher Peak Signal-to-Noise Ratio (PSNR) and Structural Similiraty Index Measure (SSIM) indicating better reconstruction.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"1 1","pages":"35-54"},"PeriodicalIF":0.8000,"publicationDate":"2018-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"SAR IMAGE COMPRESSION USING ADAPTIVE DIFFERENTIAL EVOLUTION AND PATTERN SEARCH BASED K-MEANS VECTOR QUANTIZATION\",\"authors\":\"K. Chiranjeevi, U. Jena\",\"doi\":\"10.5566/IAS.1611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel Vector Quantization (VQ) technique for encoding the Bi-orthogonal wavelet decomposed image using hybrid Adaptive Differential Evolution (ADE) and a Pattern Search optimization algorithm (hADEPS) is proposed. ADE is a modified version of Differential Evolution (DE) in which mutation operation is made adaptive based on the ascending/descending objective function or fitness value and tested on twelve numerical benchmark functions and the results are compared and proved better than Genetic Algorithm (GA), ordinary DE and FA. ADE is a global optimizer which explore the global search space and PS is local optimizer which exploit a local search space, so ADE is hybridized with PS. In the proposed VQ, in a codebook of codewords, 62.5% of codewords are assigned and optimized for the approximation coefficients and the remaining 37.5% are equally assigned to horizontal, vertical and diagonal coefficients. The superiority of proposed hybrid Adaptive Differential Evolution and Pattern Search (hADE-PS) optimized vector quantization over DE is demonstrated. The proposed technique is compared with DE based VQ and ADE based quantization and with standard LBG algorithm. Results show higher Peak Signal-to-Noise Ratio (PSNR) and Structural Similiraty Index Measure (SSIM) indicating better reconstruction.\",\"PeriodicalId\":49062,\"journal\":{\"name\":\"Image Analysis & Stereology\",\"volume\":\"1 1\",\"pages\":\"35-54\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Analysis & Stereology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5566/IAS.1611\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1611","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
SAR IMAGE COMPRESSION USING ADAPTIVE DIFFERENTIAL EVOLUTION AND PATTERN SEARCH BASED K-MEANS VECTOR QUANTIZATION
A novel Vector Quantization (VQ) technique for encoding the Bi-orthogonal wavelet decomposed image using hybrid Adaptive Differential Evolution (ADE) and a Pattern Search optimization algorithm (hADEPS) is proposed. ADE is a modified version of Differential Evolution (DE) in which mutation operation is made adaptive based on the ascending/descending objective function or fitness value and tested on twelve numerical benchmark functions and the results are compared and proved better than Genetic Algorithm (GA), ordinary DE and FA. ADE is a global optimizer which explore the global search space and PS is local optimizer which exploit a local search space, so ADE is hybridized with PS. In the proposed VQ, in a codebook of codewords, 62.5% of codewords are assigned and optimized for the approximation coefficients and the remaining 37.5% are equally assigned to horizontal, vertical and diagonal coefficients. The superiority of proposed hybrid Adaptive Differential Evolution and Pattern Search (hADE-PS) optimized vector quantization over DE is demonstrated. The proposed technique is compared with DE based VQ and ADE based quantization and with standard LBG algorithm. Results show higher Peak Signal-to-Noise Ratio (PSNR) and Structural Similiraty Index Measure (SSIM) indicating better reconstruction.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.