光滑封闭表面上的数值正交。

Turcica Pub Date : 2016-10-01 DOI:10.1098/rspa.2016.0401
J A Reeger, B Fornberg, M L Watts
{"title":"光滑封闭表面上的数值正交。","authors":"J A Reeger, B Fornberg, M L Watts","doi":"10.1098/rspa.2016.0401","DOIUrl":null,"url":null,"abstract":"<p><p>The numerical approximation of definite integrals, or quadrature, often involves the construction of an interpolant of the integrand and its subsequent integration. In the case of one dimension it is natural to rely on polynomial interpolants. However, their extension to two or more dimensions can be costly and unstable. An efficient method for computing surface integrals on the sphere is detailed in the literature (Reeger & Fornberg 2016 <i>Stud. Appl. Math.</i><b>137</b>, 174-188. (doi:10.1111/sapm.12106)). The method uses local radial basis function interpolation to reduce computational complexity when generating quadrature weights for any given node set. This article generalizes this method to arbitrary smooth closed surfaces.</p>","PeriodicalId":93683,"journal":{"name":"Turcica","volume":"30 1","pages":"20160401"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095443/pdf/","citationCount":"0","resultStr":"{\"title\":\"Numerical quadrature over smooth, closed surfaces.\",\"authors\":\"J A Reeger, B Fornberg, M L Watts\",\"doi\":\"10.1098/rspa.2016.0401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The numerical approximation of definite integrals, or quadrature, often involves the construction of an interpolant of the integrand and its subsequent integration. In the case of one dimension it is natural to rely on polynomial interpolants. However, their extension to two or more dimensions can be costly and unstable. An efficient method for computing surface integrals on the sphere is detailed in the literature (Reeger & Fornberg 2016 <i>Stud. Appl. Math.</i><b>137</b>, 174-188. (doi:10.1111/sapm.12106)). The method uses local radial basis function interpolation to reduce computational complexity when generating quadrature weights for any given node set. This article generalizes this method to arbitrary smooth closed surfaces.</p>\",\"PeriodicalId\":93683,\"journal\":{\"name\":\"Turcica\",\"volume\":\"30 1\",\"pages\":\"20160401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095443/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turcica\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2016.0401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turcica","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2016.0401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定积分的数值逼近或正交,通常涉及建立积分的内插值及其后续积分。在一维情况下,依靠多项式内插值是很自然的。然而,将其扩展到二维或更多维时,成本会很高,而且不稳定。文献中详细介绍了计算球面曲面积分的高效方法(Reeger & Fornberg 2016 Stud.应用数学》137, 174-188.(doi:10.1111/sapm.12106)).该方法使用局部径向基函数插值,以降低为任何给定节点集生成正交权重时的计算复杂度。本文将此方法推广到任意光滑闭合曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical quadrature over smooth, closed surfaces.

The numerical approximation of definite integrals, or quadrature, often involves the construction of an interpolant of the integrand and its subsequent integration. In the case of one dimension it is natural to rely on polynomial interpolants. However, their extension to two or more dimensions can be costly and unstable. An efficient method for computing surface integrals on the sphere is detailed in the literature (Reeger & Fornberg 2016 Stud. Appl. Math.137, 174-188. (doi:10.1111/sapm.12106)). The method uses local radial basis function interpolation to reduce computational complexity when generating quadrature weights for any given node set. This article generalizes this method to arbitrary smooth closed surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信