{"title":"在Kantor产品上,2","authors":"Renato Fehlberg J'unior, I. Kaygorodov","doi":"10.15330/cmp.14.2.543-563","DOIUrl":null,"url":null,"abstract":"We describe the Kantor square (and Kantor product) of multiplications, extending the classification proposed in [J. Algebra Appl. 2017, 16 (9), 1750167]. Besides, we explicitly describe the Kantor square of some low dimensional algebras and give constructive methods for obtaining new transposed Poisson algebras and Poisson-Novikov algebras; and for classifying Poisson structures and commutative post-Lie structures on a given algebra.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"9 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Kantor product, II\",\"authors\":\"Renato Fehlberg J'unior, I. Kaygorodov\",\"doi\":\"10.15330/cmp.14.2.543-563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the Kantor square (and Kantor product) of multiplications, extending the classification proposed in [J. Algebra Appl. 2017, 16 (9), 1750167]. Besides, we explicitly describe the Kantor square of some low dimensional algebras and give constructive methods for obtaining new transposed Poisson algebras and Poisson-Novikov algebras; and for classifying Poisson structures and commutative post-Lie structures on a given algebra.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.543-563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.543-563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We describe the Kantor square (and Kantor product) of multiplications, extending the classification proposed in [J. Algebra Appl. 2017, 16 (9), 1750167]. Besides, we explicitly describe the Kantor square of some low dimensional algebras and give constructive methods for obtaining new transposed Poisson algebras and Poisson-Novikov algebras; and for classifying Poisson structures and commutative post-Lie structures on a given algebra.