Ayoub Laoucine, M. Bachene, S. Rechak, G. Lorenzini, N. Kaid, Y. Menni
{"title":"金属板冲压穿孔分析","authors":"Ayoub Laoucine, M. Bachene, S. Rechak, G. Lorenzini, N. Kaid, Y. Menni","doi":"10.18280/acsm.460101","DOIUrl":null,"url":null,"abstract":"In this work, a numerical study of the perforation of 6061-T6 aluminum, Titanium Ti6Al4V and stainless steel (Nitronic33) plates by a rigid flat nose punch is carried out. The Johnson-Cook model was used to define the behavior of the material constituting the plate. This homogeneous behavior was coupled with the Johnson-Cook rupture criterion to completely predict the perforation process. Initially, the present results are validated by comparing them with the results reported in the literature, including those obtained from experimental work. Thereafter, several numerical parametric analyses are performed to investigate the behavior of these metal plates depending on the maximum breaking force, the temperature in the perforated plates, the kinetic energy, the clearance on the shape of the sheared edge, and the dimensional accuracy of the plates.","PeriodicalId":7877,"journal":{"name":"Annales de Chimie - Science des Matériaux","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perforation Analysis by Punching of Metal Sheets\",\"authors\":\"Ayoub Laoucine, M. Bachene, S. Rechak, G. Lorenzini, N. Kaid, Y. Menni\",\"doi\":\"10.18280/acsm.460101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a numerical study of the perforation of 6061-T6 aluminum, Titanium Ti6Al4V and stainless steel (Nitronic33) plates by a rigid flat nose punch is carried out. The Johnson-Cook model was used to define the behavior of the material constituting the plate. This homogeneous behavior was coupled with the Johnson-Cook rupture criterion to completely predict the perforation process. Initially, the present results are validated by comparing them with the results reported in the literature, including those obtained from experimental work. Thereafter, several numerical parametric analyses are performed to investigate the behavior of these metal plates depending on the maximum breaking force, the temperature in the perforated plates, the kinetic energy, the clearance on the shape of the sheared edge, and the dimensional accuracy of the plates.\",\"PeriodicalId\":7877,\"journal\":{\"name\":\"Annales de Chimie - Science des Matériaux\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de Chimie - Science des Matériaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/acsm.460101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de Chimie - Science des Matériaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.460101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this work, a numerical study of the perforation of 6061-T6 aluminum, Titanium Ti6Al4V and stainless steel (Nitronic33) plates by a rigid flat nose punch is carried out. The Johnson-Cook model was used to define the behavior of the material constituting the plate. This homogeneous behavior was coupled with the Johnson-Cook rupture criterion to completely predict the perforation process. Initially, the present results are validated by comparing them with the results reported in the literature, including those obtained from experimental work. Thereafter, several numerical parametric analyses are performed to investigate the behavior of these metal plates depending on the maximum breaking force, the temperature in the perforated plates, the kinetic energy, the clearance on the shape of the sheared edge, and the dimensional accuracy of the plates.