一种基于kd树的高级k近邻分类算法

Wenfeng Hou, Daiwei Li, Chao Xu, Haiqing Zhang, Tianrui Li
{"title":"一种基于kd树的高级k近邻分类算法","authors":"Wenfeng Hou, Daiwei Li, Chao Xu, Haiqing Zhang, Tianrui Li","doi":"10.1109/IICSPI.2018.8690508","DOIUrl":null,"url":null,"abstract":"KNN (K Nearest-neighbor Classification) is a lazy learning classification algorithm, where it only memorizes the training dataset instead of providing a defined discriminative function. KNN tends to search the nearest neighbor(s) for a target in the entire training set, hence, the prediction step of KNN is quite time consuming. KD-tree (K Dimensional-tree) is a multi-dimensional binary tree, which is a specific storage structure for efficiently representing training data. Therefore, the paper takes the advantages of KNN and KD-tree and then proposes a new classification algorithm called KNN-KD-tree. Eleven datasets have been adopted to conduct experiments. The experiments have shown that the proposed KNN-KD-tree algorithm can efficiently reduce time complexity and significantly improve search performance.","PeriodicalId":6673,"journal":{"name":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","volume":"3 1","pages":"902-905"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"An Advanced k Nearest Neighbor Classification Algorithm Based on KD-tree\",\"authors\":\"Wenfeng Hou, Daiwei Li, Chao Xu, Haiqing Zhang, Tianrui Li\",\"doi\":\"10.1109/IICSPI.2018.8690508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"KNN (K Nearest-neighbor Classification) is a lazy learning classification algorithm, where it only memorizes the training dataset instead of providing a defined discriminative function. KNN tends to search the nearest neighbor(s) for a target in the entire training set, hence, the prediction step of KNN is quite time consuming. KD-tree (K Dimensional-tree) is a multi-dimensional binary tree, which is a specific storage structure for efficiently representing training data. Therefore, the paper takes the advantages of KNN and KD-tree and then proposes a new classification algorithm called KNN-KD-tree. Eleven datasets have been adopted to conduct experiments. The experiments have shown that the proposed KNN-KD-tree algorithm can efficiently reduce time complexity and significantly improve search performance.\",\"PeriodicalId\":6673,\"journal\":{\"name\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"volume\":\"3 1\",\"pages\":\"902-905\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI.2018.8690508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference of Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI.2018.8690508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

KNN (K最近邻分类)是一种惰性学习分类算法,它只记忆训练数据集,而不提供定义的判别函数。KNN倾向于在整个训练集中搜索目标的最近邻居,因此,KNN的预测步骤相当耗时。KD-tree (K Dimensional-tree)是一种多维二叉树,是一种有效表示训练数据的特定存储结构。因此,本文利用KNN和KD-tree的优点,提出了一种新的分类算法KNN-KD-tree。采用了11个数据集进行实验。实验表明,所提出的KNN-KD-tree算法能够有效降低时间复杂度,显著提高搜索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Advanced k Nearest Neighbor Classification Algorithm Based on KD-tree
KNN (K Nearest-neighbor Classification) is a lazy learning classification algorithm, where it only memorizes the training dataset instead of providing a defined discriminative function. KNN tends to search the nearest neighbor(s) for a target in the entire training set, hence, the prediction step of KNN is quite time consuming. KD-tree (K Dimensional-tree) is a multi-dimensional binary tree, which is a specific storage structure for efficiently representing training data. Therefore, the paper takes the advantages of KNN and KD-tree and then proposes a new classification algorithm called KNN-KD-tree. Eleven datasets have been adopted to conduct experiments. The experiments have shown that the proposed KNN-KD-tree algorithm can efficiently reduce time complexity and significantly improve search performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信