通过上下文行走在视频中的动作定位

K. Soomro, Haroon Idrees, M. Shah
{"title":"通过上下文行走在视频中的动作定位","authors":"K. Soomro, Haroon Idrees, M. Shah","doi":"10.1109/ICCV.2015.375","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient approach for localizing actions by learning contextual relations, in the form of relative locations between different video regions. We begin by over-segmenting the videos into supervoxels, which have the ability to preserve action boundaries and also reduce the complexity of the problem. Context relations are learned during training which capture displacements from all the supervoxels in a video to those belonging to foreground actions. Then, given a testing video, we select a supervoxel randomly and use the context information acquired during training to estimate the probability of each supervoxel belonging to the foreground action. The walk proceeds to a new supervoxel and the process is repeated for a few steps. This \"context walk\" generates a conditional distribution of an action over all the supervoxels. A Conditional Random Field is then used to find action proposals in the video, whose confidences are obtained using SVMs. We validated the proposed approach on several datasets and show that context in the form of relative displacements between supervoxels can be extremely useful for action localization. This also results in significantly fewer evaluations of the classifier, in sharp contrast to the alternate sliding window approaches.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"91 1","pages":"3280-3288"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Action Localization in Videos through Context Walk\",\"authors\":\"K. Soomro, Haroon Idrees, M. Shah\",\"doi\":\"10.1109/ICCV.2015.375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient approach for localizing actions by learning contextual relations, in the form of relative locations between different video regions. We begin by over-segmenting the videos into supervoxels, which have the ability to preserve action boundaries and also reduce the complexity of the problem. Context relations are learned during training which capture displacements from all the supervoxels in a video to those belonging to foreground actions. Then, given a testing video, we select a supervoxel randomly and use the context information acquired during training to estimate the probability of each supervoxel belonging to the foreground action. The walk proceeds to a new supervoxel and the process is repeated for a few steps. This \\\"context walk\\\" generates a conditional distribution of an action over all the supervoxels. A Conditional Random Field is then used to find action proposals in the video, whose confidences are obtained using SVMs. We validated the proposed approach on several datasets and show that context in the form of relative displacements between supervoxels can be extremely useful for action localization. This also results in significantly fewer evaluations of the classifier, in sharp contrast to the alternate sliding window approaches.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"91 1\",\"pages\":\"3280-3288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

本文提出了一种通过学习上下文关系(以不同视频区域之间的相对位置的形式)来定位动作的有效方法。我们首先将视频过度分割成超体素,这有能力保留动作边界,也降低了问题的复杂性。上下文关系是在训练过程中学习的,它捕获视频中所有超体素到那些属于前景动作的超体素的位移。然后,给定一个测试视频,我们随机选择一个超体素,并使用在训练过程中获得的上下文信息来估计每个超体素属于前景动作的概率。行走继续到一个新的超体素,这个过程重复了几个步骤。这种“上下文行走”在所有超体素上生成一个动作的条件分布。然后使用条件随机场来查找视频中的动作建议,并使用支持向量机获得其置信度。我们在几个数据集上验证了所提出的方法,并表明超体素之间相对位移形式的上下文对于动作定位非常有用。这也导致分类器的评估显著减少,与滑动窗口方法形成鲜明对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action Localization in Videos through Context Walk
This paper presents an efficient approach for localizing actions by learning contextual relations, in the form of relative locations between different video regions. We begin by over-segmenting the videos into supervoxels, which have the ability to preserve action boundaries and also reduce the complexity of the problem. Context relations are learned during training which capture displacements from all the supervoxels in a video to those belonging to foreground actions. Then, given a testing video, we select a supervoxel randomly and use the context information acquired during training to estimate the probability of each supervoxel belonging to the foreground action. The walk proceeds to a new supervoxel and the process is repeated for a few steps. This "context walk" generates a conditional distribution of an action over all the supervoxels. A Conditional Random Field is then used to find action proposals in the video, whose confidences are obtained using SVMs. We validated the proposed approach on several datasets and show that context in the form of relative displacements between supervoxels can be extremely useful for action localization. This also results in significantly fewer evaluations of the classifier, in sharp contrast to the alternate sliding window approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信