C. Lete, M. Marin, F. D. del Campo, I. Diaconu, Stelian Lupu
{"title":"用于钾离子电化学传感的锑锡氧化-普鲁士蓝丝网印刷电极","authors":"C. Lete, M. Marin, F. D. del Campo, I. Diaconu, Stelian Lupu","doi":"10.3390/csac2021-10639","DOIUrl":null,"url":null,"abstract":"In this work, the characterization and the electro-analytical applications of antimony tin oxide (ATO)–Prussian blue (PB) screen printed electrodes (SPE) are presented. The ATO conducting particles have been used recently in the development of screen-printed electrodes due to their excellent spectroelectrochemical properties. PB is a transition metal hexacyanoferrate with high electrocatalytic properties towards various biologically active compounds like hydrogen peroxide, besides its outstanding electrochromic properties. A combination of ATO and PB ingredients into a screen-printing paste provided a versatile and cost-effective way in the development of novel electrode materials for electrochemical sensing. The ATO-PB electrode material displayed good electrochemical properties demonstrated by means of cyclic voltammetry and electrochemical impedance measurements. In addition, the PB provided a high selectivity towards potassium ions in solution due to its zeolitic structures and excellent redox behavior. The cyclic voltammetric responses recorded at the ATO-PB-SPE device in the presence of potassium ions revealed a linear dependence of the cathodic peak current and cathodic peak potential of the Prussian blue/Everitt’s salt redox system on the potassium concentrations ranging from 0.1 to 10 mM. This finding could be exploited in the development of an electrochemical sensor for electro-inactive chemical species. The potential application of the ATO-PB electrode in the electrochemical sensing of electro-active species like caffeic acid was also studied. An increase of the anodic peak current of the PB/ES redox wave in the presence of caffeic acid was observed. These results point out to the potential analytical applications of the ATO-PB electrode in the sensing of both electro-active and electro-inactive species.","PeriodicalId":9815,"journal":{"name":"Chemistry Proceedings","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimony Tin Oxide—Prussian Blue Screen-Printed Electrodes for Electrochemical Sensing of Potassium Ions\",\"authors\":\"C. Lete, M. Marin, F. D. del Campo, I. Diaconu, Stelian Lupu\",\"doi\":\"10.3390/csac2021-10639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the characterization and the electro-analytical applications of antimony tin oxide (ATO)–Prussian blue (PB) screen printed electrodes (SPE) are presented. The ATO conducting particles have been used recently in the development of screen-printed electrodes due to their excellent spectroelectrochemical properties. PB is a transition metal hexacyanoferrate with high electrocatalytic properties towards various biologically active compounds like hydrogen peroxide, besides its outstanding electrochromic properties. A combination of ATO and PB ingredients into a screen-printing paste provided a versatile and cost-effective way in the development of novel electrode materials for electrochemical sensing. The ATO-PB electrode material displayed good electrochemical properties demonstrated by means of cyclic voltammetry and electrochemical impedance measurements. In addition, the PB provided a high selectivity towards potassium ions in solution due to its zeolitic structures and excellent redox behavior. The cyclic voltammetric responses recorded at the ATO-PB-SPE device in the presence of potassium ions revealed a linear dependence of the cathodic peak current and cathodic peak potential of the Prussian blue/Everitt’s salt redox system on the potassium concentrations ranging from 0.1 to 10 mM. This finding could be exploited in the development of an electrochemical sensor for electro-inactive chemical species. The potential application of the ATO-PB electrode in the electrochemical sensing of electro-active species like caffeic acid was also studied. An increase of the anodic peak current of the PB/ES redox wave in the presence of caffeic acid was observed. These results point out to the potential analytical applications of the ATO-PB electrode in the sensing of both electro-active and electro-inactive species.\",\"PeriodicalId\":9815,\"journal\":{\"name\":\"Chemistry Proceedings\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/csac2021-10639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/csac2021-10639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antimony Tin Oxide—Prussian Blue Screen-Printed Electrodes for Electrochemical Sensing of Potassium Ions
In this work, the characterization and the electro-analytical applications of antimony tin oxide (ATO)–Prussian blue (PB) screen printed electrodes (SPE) are presented. The ATO conducting particles have been used recently in the development of screen-printed electrodes due to their excellent spectroelectrochemical properties. PB is a transition metal hexacyanoferrate with high electrocatalytic properties towards various biologically active compounds like hydrogen peroxide, besides its outstanding electrochromic properties. A combination of ATO and PB ingredients into a screen-printing paste provided a versatile and cost-effective way in the development of novel electrode materials for electrochemical sensing. The ATO-PB electrode material displayed good electrochemical properties demonstrated by means of cyclic voltammetry and electrochemical impedance measurements. In addition, the PB provided a high selectivity towards potassium ions in solution due to its zeolitic structures and excellent redox behavior. The cyclic voltammetric responses recorded at the ATO-PB-SPE device in the presence of potassium ions revealed a linear dependence of the cathodic peak current and cathodic peak potential of the Prussian blue/Everitt’s salt redox system on the potassium concentrations ranging from 0.1 to 10 mM. This finding could be exploited in the development of an electrochemical sensor for electro-inactive chemical species. The potential application of the ATO-PB electrode in the electrochemical sensing of electro-active species like caffeic acid was also studied. An increase of the anodic peak current of the PB/ES redox wave in the presence of caffeic acid was observed. These results point out to the potential analytical applications of the ATO-PB electrode in the sensing of both electro-active and electro-inactive species.