金融时间序列分析的MATLAB实现

Q2 Social Sciences
Xinyuan Zheng
{"title":"金融时间序列分析的MATLAB实现","authors":"Xinyuan Zheng","doi":"10.20849/abr.v4i3.687","DOIUrl":null,"url":null,"abstract":"This report contains two parts. For part A, performing a Principle Components Analysis (PCA) and analyzing the drivers. Then, carrying out factor analyses and comparing them. For part B, employing 5 different quantitative models to forecast and generate moving origin horizon one forecasts of both return and volatility. Then, figuring out the optimal weights for the portfolio and assigning the optimal portfolio. Finally, comparing the returns and risk measure from all portfolio and models.","PeriodicalId":37159,"journal":{"name":"Asian Journal of Business Research","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Financial Time Series Analysis by Using MATLAB\",\"authors\":\"Xinyuan Zheng\",\"doi\":\"10.20849/abr.v4i3.687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This report contains two parts. For part A, performing a Principle Components Analysis (PCA) and analyzing the drivers. Then, carrying out factor analyses and comparing them. For part B, employing 5 different quantitative models to forecast and generate moving origin horizon one forecasts of both return and volatility. Then, figuring out the optimal weights for the portfolio and assigning the optimal portfolio. Finally, comparing the returns and risk measure from all portfolio and models.\",\"PeriodicalId\":37159,\"journal\":{\"name\":\"Asian Journal of Business Research\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Business Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20849/abr.v4i3.687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Business Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20849/abr.v4i3.687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本报告分为两部分。对于A部分,执行主成分分析(PCA)并分析驱动因素。然后进行因子分析并进行比较。对于B部分,采用5种不同的定量模型来预测和生成移动原点地平线,预测收益和波动率。然后,计算出投资组合的最优权重,并分配最优投资组合。最后,比较了所有投资组合和模型的收益和风险度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Financial Time Series Analysis by Using MATLAB
This report contains two parts. For part A, performing a Principle Components Analysis (PCA) and analyzing the drivers. Then, carrying out factor analyses and comparing them. For part B, employing 5 different quantitative models to forecast and generate moving origin horizon one forecasts of both return and volatility. Then, figuring out the optimal weights for the portfolio and assigning the optimal portfolio. Finally, comparing the returns and risk measure from all portfolio and models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asian Journal of Business Research
Asian Journal of Business Research Social Sciences-Political Science and International Relations
CiteScore
2.40
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信