对因果推理具有足够随机性的渐近阈值

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Stat Pub Date : 2023-08-01 DOI:10.1002/sta4.609
B. Knaeble, B. Osting, P. Tshiaba
{"title":"对因果推理具有足够随机性的渐近阈值","authors":"B. Knaeble, B. Osting, P. Tshiaba","doi":"10.1002/sta4.609","DOIUrl":null,"url":null,"abstract":"For sensitivity analysis with stochastic counterfactuals, we introduce a methodology to characterize uncertainty in causal inference from natural experiments. Our sensitivity parameters are standardized measures of variation in propensity and prognosis probabilities, and one minus their geometric mean is an intuitive measure of randomness in the data generating process. Within our latent propensity‐prognosis model, we show how to compute, from contingency table data, a threshold, , of sufficient randomness for causal inference. If the actual randomness of the data generating process is greater than this threshold, then causal inference is warranted. We demonstrate our methodology with two example applications.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An asymptotic threshold of sufficient randomness for causal inference\",\"authors\":\"B. Knaeble, B. Osting, P. Tshiaba\",\"doi\":\"10.1002/sta4.609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For sensitivity analysis with stochastic counterfactuals, we introduce a methodology to characterize uncertainty in causal inference from natural experiments. Our sensitivity parameters are standardized measures of variation in propensity and prognosis probabilities, and one minus their geometric mean is an intuitive measure of randomness in the data generating process. Within our latent propensity‐prognosis model, we show how to compute, from contingency table data, a threshold, , of sufficient randomness for causal inference. If the actual randomness of the data generating process is greater than this threshold, then causal inference is warranted. We demonstrate our methodology with two example applications.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.609\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.609","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

对于随机反事实的敏感性分析,我们引入了一种方法来表征自然实验因果推理中的不确定性。我们的敏感性参数是倾向和预后概率变化的标准化度量,一减去它们的几何平均值是数据生成过程中随机性的直观度量。在我们的潜在倾向-预测模型中,我们展示了如何从列联表数据中计算足够随机性的阈值,以进行因果推理。如果数据生成过程的实际随机性大于这个阈值,则可以进行因果推理。我们用两个示例应用程序演示我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An asymptotic threshold of sufficient randomness for causal inference
For sensitivity analysis with stochastic counterfactuals, we introduce a methodology to characterize uncertainty in causal inference from natural experiments. Our sensitivity parameters are standardized measures of variation in propensity and prognosis probabilities, and one minus their geometric mean is an intuitive measure of randomness in the data generating process. Within our latent propensity‐prognosis model, we show how to compute, from contingency table data, a threshold, , of sufficient randomness for causal inference. If the actual randomness of the data generating process is greater than this threshold, then causal inference is warranted. We demonstrate our methodology with two example applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stat
Stat Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍: Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell. Stat is characterised by: • Speed - a high-quality review process that aims to reach a decision within 20 days of submission. • Concision - a maximum article length of 10 pages of text, not including references. • Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images. • Scope - addresses all areas of statistics and interdisciplinary areas. Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信