{"title":"元素物种形成分析,从环境到生化挑战","authors":"P. Jitaru, C. Barbante","doi":"10.1051/JP4:2006139019","DOIUrl":null,"url":null,"abstract":"Information regarding the distribution of metallic/metalloid chemical species in biological compartments is required for understanding their biochemical impact on living organisms. To obtain such information implies the use of a dedicated measurement approach, namely speciation analysis. The current trend in (elemental) speciation analysis regards bioinorganic applications. New analytical methodologies are therefore necessary for identification, detection and characterization of metal(loids) complexed or incorporated into biomolecules. The established element-speciation approaches developed for the determination of low molecular mass metal(loid) species (e.g. organometallic compounds) in environmental, food, toxicological and health sciences are presently being adapted for the determination of high molecular mass metal-species, generally related to biological processes. This is one of the newest approaches in terms of element speciation and is called metallomics; this concept refers to the totality of metal species in a cell and covers the inorganic element content and the ensemble of its complexes with biomolecules, particularly proteins, participating in the organisms' response to beneficial or harmful conditions. Compared to conventional elemental speciation analysis, the approach applied to bioinorganic analysis is challenging, particularly given the difficulties in identification/characterization of the organic (e.g. protein) content of such species. In addition, quantification is not feasible with the conventional approaches, which led to the exploitation of the unique feature of (post-column) online isotope dilution-mass spectrometry for species quantification in metallomics.","PeriodicalId":14838,"journal":{"name":"Journal De Physique Iv","volume":"12 5 1","pages":"269-294"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elemental speciation analysis, from environmental to biochemical challenge\",\"authors\":\"P. Jitaru, C. Barbante\",\"doi\":\"10.1051/JP4:2006139019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information regarding the distribution of metallic/metalloid chemical species in biological compartments is required for understanding their biochemical impact on living organisms. To obtain such information implies the use of a dedicated measurement approach, namely speciation analysis. The current trend in (elemental) speciation analysis regards bioinorganic applications. New analytical methodologies are therefore necessary for identification, detection and characterization of metal(loids) complexed or incorporated into biomolecules. The established element-speciation approaches developed for the determination of low molecular mass metal(loid) species (e.g. organometallic compounds) in environmental, food, toxicological and health sciences are presently being adapted for the determination of high molecular mass metal-species, generally related to biological processes. This is one of the newest approaches in terms of element speciation and is called metallomics; this concept refers to the totality of metal species in a cell and covers the inorganic element content and the ensemble of its complexes with biomolecules, particularly proteins, participating in the organisms' response to beneficial or harmful conditions. Compared to conventional elemental speciation analysis, the approach applied to bioinorganic analysis is challenging, particularly given the difficulties in identification/characterization of the organic (e.g. protein) content of such species. In addition, quantification is not feasible with the conventional approaches, which led to the exploitation of the unique feature of (post-column) online isotope dilution-mass spectrometry for species quantification in metallomics.\",\"PeriodicalId\":14838,\"journal\":{\"name\":\"Journal De Physique Iv\",\"volume\":\"12 5 1\",\"pages\":\"269-294\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique Iv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JP4:2006139019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique Iv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JP4:2006139019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elemental speciation analysis, from environmental to biochemical challenge
Information regarding the distribution of metallic/metalloid chemical species in biological compartments is required for understanding their biochemical impact on living organisms. To obtain such information implies the use of a dedicated measurement approach, namely speciation analysis. The current trend in (elemental) speciation analysis regards bioinorganic applications. New analytical methodologies are therefore necessary for identification, detection and characterization of metal(loids) complexed or incorporated into biomolecules. The established element-speciation approaches developed for the determination of low molecular mass metal(loid) species (e.g. organometallic compounds) in environmental, food, toxicological and health sciences are presently being adapted for the determination of high molecular mass metal-species, generally related to biological processes. This is one of the newest approaches in terms of element speciation and is called metallomics; this concept refers to the totality of metal species in a cell and covers the inorganic element content and the ensemble of its complexes with biomolecules, particularly proteins, participating in the organisms' response to beneficial or harmful conditions. Compared to conventional elemental speciation analysis, the approach applied to bioinorganic analysis is challenging, particularly given the difficulties in identification/characterization of the organic (e.g. protein) content of such species. In addition, quantification is not feasible with the conventional approaches, which led to the exploitation of the unique feature of (post-column) online isotope dilution-mass spectrometry for species quantification in metallomics.