算法1013

Daisy Arroyo, X. Emery
{"title":"算法1013","authors":"Daisy Arroyo, X. Emery","doi":"10.1145/3421316","DOIUrl":null,"url":null,"abstract":"A continuous spectral algorithm and computer routines in the R programming environment that enable the simulation of second-order stationary and intrinsic (i.e., with second-order stationary increments or generalized increments) vector Gaussian random fields in Euclidean spaces are presented. The simulation is obtained by computing a weighted sum of cosine and sine waves, with weights that depend on the matrix-valued spectral density associated with the spatial correlation structure of the random field to simulate. The computational cost is proportional to the number of locations targeted for simulation, below that of sequential, matrix decomposition and discrete spectral algorithms. Also, the implementation is versatile, as there is no restriction on the number of vector components, workspace dimension, number and geometrical configuration of the target locations. The computer routines are illustrated with synthetic examples and statistical testing is proposed to check the normality of the distribution of the simulated random field or of its generalized increments. A by-product of this work is a spectral representation of spherical, cubic, penta, Askey, J-Bessel, Cauchy, Laguerre, hypergeometric, iterated exponential, gamma, and stable covariance models in the d-dimensional Euclidean space.","PeriodicalId":7036,"journal":{"name":"ACM Transactions on Mathematical Software (TOMS)","volume":"44 1","pages":"1 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Algorithm 1013\",\"authors\":\"Daisy Arroyo, X. Emery\",\"doi\":\"10.1145/3421316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A continuous spectral algorithm and computer routines in the R programming environment that enable the simulation of second-order stationary and intrinsic (i.e., with second-order stationary increments or generalized increments) vector Gaussian random fields in Euclidean spaces are presented. The simulation is obtained by computing a weighted sum of cosine and sine waves, with weights that depend on the matrix-valued spectral density associated with the spatial correlation structure of the random field to simulate. The computational cost is proportional to the number of locations targeted for simulation, below that of sequential, matrix decomposition and discrete spectral algorithms. Also, the implementation is versatile, as there is no restriction on the number of vector components, workspace dimension, number and geometrical configuration of the target locations. The computer routines are illustrated with synthetic examples and statistical testing is proposed to check the normality of the distribution of the simulated random field or of its generalized increments. A by-product of this work is a spectral representation of spherical, cubic, penta, Askey, J-Bessel, Cauchy, Laguerre, hypergeometric, iterated exponential, gamma, and stable covariance models in the d-dimensional Euclidean space.\",\"PeriodicalId\":7036,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software (TOMS)\",\"volume\":\"44 1\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software (TOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3421316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software (TOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3421316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种连续谱算法和R编程环境中的计算机例程,可以模拟欧几里得空间中的二阶平稳和本征(即二阶平稳增量或广义增量)矢量高斯随机场。模拟是通过计算余弦波和正弦波的加权和得到的,其权重取决于随机场空间相关结构相关的矩阵值谱密度来模拟。计算成本与模拟目标位置的数量成正比,低于顺序、矩阵分解和离散谱算法。此外,实现是通用的,因为对矢量组件的数量、工作空间尺寸、目标位置的数量和几何配置没有限制。用综合实例说明了计算机程序,并提出了统计检验来检验模拟随机场分布或其广义增量的正态性。这项工作的副产品是d维欧几里得空间中的球面、三次、五次、Askey、J-Bessel、Cauchy、Laguerre、超几何、迭代指数、伽玛和稳定协方差模型的光谱表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm 1013
A continuous spectral algorithm and computer routines in the R programming environment that enable the simulation of second-order stationary and intrinsic (i.e., with second-order stationary increments or generalized increments) vector Gaussian random fields in Euclidean spaces are presented. The simulation is obtained by computing a weighted sum of cosine and sine waves, with weights that depend on the matrix-valued spectral density associated with the spatial correlation structure of the random field to simulate. The computational cost is proportional to the number of locations targeted for simulation, below that of sequential, matrix decomposition and discrete spectral algorithms. Also, the implementation is versatile, as there is no restriction on the number of vector components, workspace dimension, number and geometrical configuration of the target locations. The computer routines are illustrated with synthetic examples and statistical testing is proposed to check the normality of the distribution of the simulated random field or of its generalized increments. A by-product of this work is a spectral representation of spherical, cubic, penta, Askey, J-Bessel, Cauchy, Laguerre, hypergeometric, iterated exponential, gamma, and stable covariance models in the d-dimensional Euclidean space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信