对经典凸性理论的新认识

V. Milman, Liran Rotem
{"title":"对经典凸性理论的新认识","authors":"V. Milman, Liran Rotem","doi":"10.15407/mag16.03.291","DOIUrl":null,"url":null,"abstract":"Let $B_{x}\\subseteq\\mathbb{R}^{n}$ denote the Euclidean ball with diameter $[0,x]$, i.e. with with center at $\\frac{x}{2}$ and radius $\\frac{\\left|x\\right|}{2}$. We call such a ball a petal. A flower $F$ is any union of petals, i.e. $F=\\bigcup_{x\\in A}B_{x}$ for any set $A\\subseteq\\mathbb{R}^{n}$. We showed in previous work that the family of all flowers $\\mathcal{F}$ is in 1-1 correspondence with $\\mathcal{K}_{0}$ - the family of all convex bodies containing $0$. Actually, there are two essentially different such correspondences. We demonstrate a number of different non-linear constructions on $\\mathcal{F}$ and $\\mathcal{K}_{0}$. Towards this goal we further develop the theory of flowers.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Novel View on Classical Convexity Theory\",\"authors\":\"V. Milman, Liran Rotem\",\"doi\":\"10.15407/mag16.03.291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $B_{x}\\\\subseteq\\\\mathbb{R}^{n}$ denote the Euclidean ball with diameter $[0,x]$, i.e. with with center at $\\\\frac{x}{2}$ and radius $\\\\frac{\\\\left|x\\\\right|}{2}$. We call such a ball a petal. A flower $F$ is any union of petals, i.e. $F=\\\\bigcup_{x\\\\in A}B_{x}$ for any set $A\\\\subseteq\\\\mathbb{R}^{n}$. We showed in previous work that the family of all flowers $\\\\mathcal{F}$ is in 1-1 correspondence with $\\\\mathcal{K}_{0}$ - the family of all convex bodies containing $0$. Actually, there are two essentially different such correspondences. We demonstrate a number of different non-linear constructions on $\\\\mathcal{F}$ and $\\\\mathcal{K}_{0}$. Towards this goal we further develop the theory of flowers.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/mag16.03.291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mag16.03.291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

设$B_{x}\subseteq\mathbb{R}^{n}$表示直径为$[0,x]$的欧几里得球,即圆心为$\frac{x}{2}$,半径为$\frac{\left|x\right|}{2}$。我们称这样的球为花瓣。一朵花$F$是花瓣的任何组合,即$F=\bigcup_{x\in A}B_{x}$对于任何集合$A\subseteq\mathbb{R}^{n}$。我们在之前的工作中表明,所有花的族$\mathcal{F}$与包含$0$的所有凸体的族$\mathcal{K}_{0}$呈1-1对应关系。实际上,有两种本质上不同的对应关系。我们在$\mathcal{F}$和$\mathcal{K}_{0}$上演示了一些不同的非线性结构。为了这个目标,我们进一步发展了花的理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel View on Classical Convexity Theory
Let $B_{x}\subseteq\mathbb{R}^{n}$ denote the Euclidean ball with diameter $[0,x]$, i.e. with with center at $\frac{x}{2}$ and radius $\frac{\left|x\right|}{2}$. We call such a ball a petal. A flower $F$ is any union of petals, i.e. $F=\bigcup_{x\in A}B_{x}$ for any set $A\subseteq\mathbb{R}^{n}$. We showed in previous work that the family of all flowers $\mathcal{F}$ is in 1-1 correspondence with $\mathcal{K}_{0}$ - the family of all convex bodies containing $0$. Actually, there are two essentially different such correspondences. We demonstrate a number of different non-linear constructions on $\mathcal{F}$ and $\mathcal{K}_{0}$. Towards this goal we further develop the theory of flowers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信