用于高效太阳能水分解的铁电表面和超畴大面积印刷

Yu Tian, Yaqing Wei, Minghui Pei, R. Cao, Zhenao Gu, Jing Wang, Kunhui Liu, Dashan Shang, J. Niu, Xiaoqiang An, R. Long, Jinxing Zhang
{"title":"用于高效太阳能水分解的铁电表面和超畴大面积印刷","authors":"Yu Tian, Yaqing Wei, Minghui Pei, R. Cao, Zhenao Gu, Jing Wang, Kunhui Liu, Dashan Shang, J. Niu, Xiaoqiang An, R. Long, Jinxing Zhang","doi":"10.21203/rs.3.rs-36437/v1","DOIUrl":null,"url":null,"abstract":"\n Surface electronic structures of the photoelectrodes determine the activity and efficiency of the photoelectrochemical water splitting, but the controls of their surface structures and interfacial chemical reactions remain challenging. Here, we use ferroelectric BiFeO3 as a model system to demonstrate an efficient and controllable water splitting reaction by large-area constructing the hydroxyls-bonded surface. The up-shift of band edge positions at this surface enables and enhances the interfacial holes and electrons transfer through the hydroxyl-active-sites, leading to simultaneously enhanced oxygen and hydrogen evolutions. Furthermore, printing of ferroelectric super-domains with microscale checkboard up/down electric fields separates the distribution of reduction/oxidation catalytic sites, enhancing the charge separation and giving rise to an order of magnitude increase of the photocurrent. This large-area printable ferroelectric surface and super-domains offer an alternative platform for controllable and high-efficient photocatalysis.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-area printing of ferroelectric surface and super-domains for efficient solar water splitting\",\"authors\":\"Yu Tian, Yaqing Wei, Minghui Pei, R. Cao, Zhenao Gu, Jing Wang, Kunhui Liu, Dashan Shang, J. Niu, Xiaoqiang An, R. Long, Jinxing Zhang\",\"doi\":\"10.21203/rs.3.rs-36437/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Surface electronic structures of the photoelectrodes determine the activity and efficiency of the photoelectrochemical water splitting, but the controls of their surface structures and interfacial chemical reactions remain challenging. Here, we use ferroelectric BiFeO3 as a model system to demonstrate an efficient and controllable water splitting reaction by large-area constructing the hydroxyls-bonded surface. The up-shift of band edge positions at this surface enables and enhances the interfacial holes and electrons transfer through the hydroxyl-active-sites, leading to simultaneously enhanced oxygen and hydrogen evolutions. Furthermore, printing of ferroelectric super-domains with microscale checkboard up/down electric fields separates the distribution of reduction/oxidation catalytic sites, enhancing the charge separation and giving rise to an order of magnitude increase of the photocurrent. This large-area printable ferroelectric surface and super-domains offer an alternative platform for controllable and high-efficient photocatalysis.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.3.rs-36437/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-36437/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光电极的表面电子结构决定了光电化学水分解的活性和效率,但其表面结构和界面化学反应的控制仍然具有挑战性。在这里,我们以铁电BiFeO3为模型体系,通过大面积构建羟基键合表面来演示高效可控的水裂解反应。该表面能带边缘位置的上移使得并增强了界面空穴和电子通过羟基活性位点的转移,从而同时增强了氧和氢的逸出。此外,利用微尺度棋盘状上下电场印刷铁电超畴,分离了还原/氧化催化位点的分布,增强了电荷分离,使光电流增加了一个数量级。这种大面积可打印的铁电表面和超畴为可控和高效的光催化提供了另一种平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-area printing of ferroelectric surface and super-domains for efficient solar water splitting
Surface electronic structures of the photoelectrodes determine the activity and efficiency of the photoelectrochemical water splitting, but the controls of their surface structures and interfacial chemical reactions remain challenging. Here, we use ferroelectric BiFeO3 as a model system to demonstrate an efficient and controllable water splitting reaction by large-area constructing the hydroxyls-bonded surface. The up-shift of band edge positions at this surface enables and enhances the interfacial holes and electrons transfer through the hydroxyl-active-sites, leading to simultaneously enhanced oxygen and hydrogen evolutions. Furthermore, printing of ferroelectric super-domains with microscale checkboard up/down electric fields separates the distribution of reduction/oxidation catalytic sites, enhancing the charge separation and giving rise to an order of magnitude increase of the photocurrent. This large-area printable ferroelectric surface and super-domains offer an alternative platform for controllable and high-efficient photocatalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信