{"title":"kalanche物种昼夜节律的自然变化","authors":"Kathryn Rebecca Malpas, M. Jones","doi":"10.2985/026.022.0107","DOIUrl":null,"url":null,"abstract":"Abstract: \n Plants have evolved an internal body clock — the circadian system — that allows the optimization of behavior during the day by anticipating regular environmental change. This timing mechanism also serves as an internal reference to control flowering time. One observable consequence of the circadian system is the rhythmic regulation of processes that underlie photosynthesis, which persists after plants are transferred to constant conditions. Many cacti and succulents use Crassulacean Acid Metabolism (CAM) as a modification of the predominant C3 method of photosynthesis to limit water loss. CAM allows the temporal separation of carbon capture from the atmosphere and the Calvin-Benson cycle, and so separates stomatal opening from some of the biochemical aspects of photosynthesis. Here we document the diversity of circadian rhythms in several Kalanchoe species and reveal differences in the period, phase and amplitude of circadian outputs derived from regulation of the photosynthetic apparatus.","PeriodicalId":50413,"journal":{"name":"Haseltonia","volume":"1 1","pages":"35 - 42"},"PeriodicalIF":2.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Natural Variation of Circadian Rhythms in Kalanchoe Species\",\"authors\":\"Kathryn Rebecca Malpas, M. Jones\",\"doi\":\"10.2985/026.022.0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: \\n Plants have evolved an internal body clock — the circadian system — that allows the optimization of behavior during the day by anticipating regular environmental change. This timing mechanism also serves as an internal reference to control flowering time. One observable consequence of the circadian system is the rhythmic regulation of processes that underlie photosynthesis, which persists after plants are transferred to constant conditions. Many cacti and succulents use Crassulacean Acid Metabolism (CAM) as a modification of the predominant C3 method of photosynthesis to limit water loss. CAM allows the temporal separation of carbon capture from the atmosphere and the Calvin-Benson cycle, and so separates stomatal opening from some of the biochemical aspects of photosynthesis. Here we document the diversity of circadian rhythms in several Kalanchoe species and reveal differences in the period, phase and amplitude of circadian outputs derived from regulation of the photosynthetic apparatus.\",\"PeriodicalId\":50413,\"journal\":{\"name\":\"Haseltonia\",\"volume\":\"1 1\",\"pages\":\"35 - 42\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Haseltonia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2985/026.022.0107\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Haseltonia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2985/026.022.0107","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Natural Variation of Circadian Rhythms in Kalanchoe Species
Abstract:
Plants have evolved an internal body clock — the circadian system — that allows the optimization of behavior during the day by anticipating regular environmental change. This timing mechanism also serves as an internal reference to control flowering time. One observable consequence of the circadian system is the rhythmic regulation of processes that underlie photosynthesis, which persists after plants are transferred to constant conditions. Many cacti and succulents use Crassulacean Acid Metabolism (CAM) as a modification of the predominant C3 method of photosynthesis to limit water loss. CAM allows the temporal separation of carbon capture from the atmosphere and the Calvin-Benson cycle, and so separates stomatal opening from some of the biochemical aspects of photosynthesis. Here we document the diversity of circadian rhythms in several Kalanchoe species and reveal differences in the period, phase and amplitude of circadian outputs derived from regulation of the photosynthetic apparatus.
期刊介绍:
Haseltonia, Yearbook of the Cactus and Succulent Society of America, is published in full color and features peer-reviewed articles about all aspects of cacti, succulents and their environs. Topics include current research and conservation reports, new species descriptions and lengthy taxonomic revisions, historical and biographical notes, chemical and cytological studies, evolutionary biology and ethnobotanical reports, propagation and pest control methods, and pollinator studies. Serious students of the world''s succulent flora, botanists, taxonomists, researchers and horticulturalists will all find Haseltonia a valuable addition to their book collection.