在T2×R+上的欧拉方程的能量守恒,对于不参考压力定义的弱解

Asymptot. Anal. Pub Date : 2018-11-19 DOI:10.3233/ASY-181482
James C. Robinson, José L. Rodrigo, Jack W. D. Skipper
{"title":"在T2×R+上的欧拉方程的能量守恒,对于不参考压力定义的弱解","authors":"James C. Robinson, José L. Rodrigo, Jack W. D. Skipper","doi":"10.3233/ASY-181482","DOIUrl":null,"url":null,"abstract":"We study weak solutions of the incompressible Euler equations on T2×R+; we use test functions that are divergence free and have zero normal component, thereby obtaining a definition that does not involve the pressure. We prove energy conservation under the assumptions that u∈L3(0,T;L3(T2×R+)), lim|y|→01|y|∫0T∫T2∫x3>|y|∞|u(x+y)−u(x)|3dxdt=0, and an additional continuity condition near the boundary: for some δ>0 we require u∈L3(0,T;C0(T2×[0,δ])). We note that all our conditions are satisfied whenever u(x,t)∈Cα, for some α>1/3, with Holder constant C(x,t)∈L3(T2×R+×(0,T)).","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"19 1","pages":"185-202"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Energy conservation for the Euler equations on T2×R+ for weak solutions defined without reference to the pressure\",\"authors\":\"James C. Robinson, José L. Rodrigo, Jack W. D. Skipper\",\"doi\":\"10.3233/ASY-181482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study weak solutions of the incompressible Euler equations on T2×R+; we use test functions that are divergence free and have zero normal component, thereby obtaining a definition that does not involve the pressure. We prove energy conservation under the assumptions that u∈L3(0,T;L3(T2×R+)), lim|y|→01|y|∫0T∫T2∫x3>|y|∞|u(x+y)−u(x)|3dxdt=0, and an additional continuity condition near the boundary: for some δ>0 we require u∈L3(0,T;C0(T2×[0,δ])). We note that all our conditions are satisfied whenever u(x,t)∈Cα, for some α>1/3, with Holder constant C(x,t)∈L3(T2×R+×(0,T)).\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"19 1\",\"pages\":\"185-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

研究了T2×R+上不可压缩欧拉方程的弱解;我们使用无散度且法向分量为零的测试函数,从而得到一个不涉及压力的定义。我们在u∈L3(0,T;L3(T2×R+)), lim|y|→01|y|∫0T∫T2∫x3>|y|∞|u(x+y)−u(x)|3dxdt=0的假设下证明了能量守恒,并在边界附近证明了一个附加的连续性条件:对于某些δ>0,我们要求u∈L3(0,T;C0(t2x [0,δ]))。我们注意到,当u(x,t)∈Cα,对于某些α>1/3,且Holder常数C(x,t)∈L3(T2×R+ x (0, t))时,所有条件都满足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy conservation for the Euler equations on T2×R+ for weak solutions defined without reference to the pressure
We study weak solutions of the incompressible Euler equations on T2×R+; we use test functions that are divergence free and have zero normal component, thereby obtaining a definition that does not involve the pressure. We prove energy conservation under the assumptions that u∈L3(0,T;L3(T2×R+)), lim|y|→01|y|∫0T∫T2∫x3>|y|∞|u(x+y)−u(x)|3dxdt=0, and an additional continuity condition near the boundary: for some δ>0 we require u∈L3(0,T;C0(T2×[0,δ])). We note that all our conditions are satisfied whenever u(x,t)∈Cα, for some α>1/3, with Holder constant C(x,t)∈L3(T2×R+×(0,T)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信