平面p-弹性和旋转线性Weingarten曲面

Q4 Mathematics
Á. Pámpano
{"title":"平面p-弹性和旋转线性Weingarten曲面","authors":"Á. Pámpano","doi":"10.7546/giq-20-2019-227-238","DOIUrl":null,"url":null,"abstract":". We variationally characterize the profile curves of rotational linear Weingarten surfaces as planar p-elastic curves. Moreover, by evolving these planar p-elasticae under the binormal flow with prescribed velocity, we describe a procedure to construct all rotational linear Weingarten surfaces, locally. Finally, we apply our findings to two well-known family of surfaces.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Planar p-Elasticae and Rotational Linear Weingarten Surfaces\",\"authors\":\"Á. Pámpano\",\"doi\":\"10.7546/giq-20-2019-227-238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We variationally characterize the profile curves of rotational linear Weingarten surfaces as planar p-elastic curves. Moreover, by evolving these planar p-elasticae under the binormal flow with prescribed velocity, we describe a procedure to construct all rotational linear Weingarten surfaces, locally. Finally, we apply our findings to two well-known family of surfaces.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-20-2019-227-238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-227-238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

. 我们将旋转线性Weingarten曲面的轮廓曲线变分表征为平面p弹性曲线。此外,通过在规定速度的二法向流动下对这些平面p弹性面进行演化,我们描述了一个局部构造所有旋转线性Weingarten曲面的过程。最后,我们将我们的发现应用于两个众所周知的曲面族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar p-Elasticae and Rotational Linear Weingarten Surfaces
. We variationally characterize the profile curves of rotational linear Weingarten surfaces as planar p-elastic curves. Moreover, by evolving these planar p-elasticae under the binormal flow with prescribed velocity, we describe a procedure to construct all rotational linear Weingarten surfaces, locally. Finally, we apply our findings to two well-known family of surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信