H. Cordoba-Novoa, María Mercedes Pérez-Trujillo, Brahyam Emmanuel Cruz Rincón, Nixon Flórez-Velasco, Stanislav Magnitskiy, Liz Patricia Moreno Fonseca
{"title":"遮荫减少草莓营养生长期间的水分亏缺","authors":"H. Cordoba-Novoa, María Mercedes Pérez-Trujillo, Brahyam Emmanuel Cruz Rincón, Nixon Flórez-Velasco, Stanislav Magnitskiy, Liz Patricia Moreno Fonseca","doi":"10.1080/15538362.2022.2114056","DOIUrl":null,"url":null,"abstract":"ABSTRACT The strawberry (Fragaria × ananassa Duch.) is a commercially important crop with high water requirements, making strategies that mitigate the influence of water deficits on plant growth necessary. This study aimed to evaluate the effects of shading on the vegetative growth of strawberry cv. Sweet Ann under a water deficit. The treatments consisted of the combination of two levels of shading (light intensity reduced by 47% vs. non-shaded plants) and two levels of water availability (water deficit vs. well-watered plants). The water deficit reduced the leaf water potential from −1.52 to −2.21 MPa, and diminished stomatal conductance, net photosynthetic rate (from 9.13 to 2.5 µmol m−2 s−1), maximum quantum efficiency of PSII photochemistry (from 0.79 to 0.67), and biomass accumulation, but increased the electrolyte leakage. The shading allowed the water-deficient plants to maintain water potential (−1.58 MPa) and photosystem II efficiency (0.79) and to increase water use efficiency (from 14.80 to 86.90 µmol CO2/mmol H2O), net photosynthetic rate (from 2.40 to 9.40 µmol m−2 s−1) and biomass of leaves, crowns, and roots, as compared to the non-shaded plants without a water limitation. These results suggest, for the first time in strawberry, that a reduction in incident light intensity attenuates the effects of stomatic and non-stomatic limitations caused by a water deficit during vegetative growth in strawberry.","PeriodicalId":14014,"journal":{"name":"International Journal of Fruit Science","volume":"100 1","pages":"725 - 740"},"PeriodicalIF":2.4000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Shading Reduces Water Deficits in Strawberry (Fragaria X Ananassa) Plants during Vegetative Growth\",\"authors\":\"H. Cordoba-Novoa, María Mercedes Pérez-Trujillo, Brahyam Emmanuel Cruz Rincón, Nixon Flórez-Velasco, Stanislav Magnitskiy, Liz Patricia Moreno Fonseca\",\"doi\":\"10.1080/15538362.2022.2114056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The strawberry (Fragaria × ananassa Duch.) is a commercially important crop with high water requirements, making strategies that mitigate the influence of water deficits on plant growth necessary. This study aimed to evaluate the effects of shading on the vegetative growth of strawberry cv. Sweet Ann under a water deficit. The treatments consisted of the combination of two levels of shading (light intensity reduced by 47% vs. non-shaded plants) and two levels of water availability (water deficit vs. well-watered plants). The water deficit reduced the leaf water potential from −1.52 to −2.21 MPa, and diminished stomatal conductance, net photosynthetic rate (from 9.13 to 2.5 µmol m−2 s−1), maximum quantum efficiency of PSII photochemistry (from 0.79 to 0.67), and biomass accumulation, but increased the electrolyte leakage. The shading allowed the water-deficient plants to maintain water potential (−1.58 MPa) and photosystem II efficiency (0.79) and to increase water use efficiency (from 14.80 to 86.90 µmol CO2/mmol H2O), net photosynthetic rate (from 2.40 to 9.40 µmol m−2 s−1) and biomass of leaves, crowns, and roots, as compared to the non-shaded plants without a water limitation. These results suggest, for the first time in strawberry, that a reduction in incident light intensity attenuates the effects of stomatic and non-stomatic limitations caused by a water deficit during vegetative growth in strawberry.\",\"PeriodicalId\":14014,\"journal\":{\"name\":\"International Journal of Fruit Science\",\"volume\":\"100 1\",\"pages\":\"725 - 740\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fruit Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/15538362.2022.2114056\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fruit Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/15538362.2022.2114056","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HORTICULTURE","Score":null,"Total":0}
Shading Reduces Water Deficits in Strawberry (Fragaria X Ananassa) Plants during Vegetative Growth
ABSTRACT The strawberry (Fragaria × ananassa Duch.) is a commercially important crop with high water requirements, making strategies that mitigate the influence of water deficits on plant growth necessary. This study aimed to evaluate the effects of shading on the vegetative growth of strawberry cv. Sweet Ann under a water deficit. The treatments consisted of the combination of two levels of shading (light intensity reduced by 47% vs. non-shaded plants) and two levels of water availability (water deficit vs. well-watered plants). The water deficit reduced the leaf water potential from −1.52 to −2.21 MPa, and diminished stomatal conductance, net photosynthetic rate (from 9.13 to 2.5 µmol m−2 s−1), maximum quantum efficiency of PSII photochemistry (from 0.79 to 0.67), and biomass accumulation, but increased the electrolyte leakage. The shading allowed the water-deficient plants to maintain water potential (−1.58 MPa) and photosystem II efficiency (0.79) and to increase water use efficiency (from 14.80 to 86.90 µmol CO2/mmol H2O), net photosynthetic rate (from 2.40 to 9.40 µmol m−2 s−1) and biomass of leaves, crowns, and roots, as compared to the non-shaded plants without a water limitation. These results suggest, for the first time in strawberry, that a reduction in incident light intensity attenuates the effects of stomatic and non-stomatic limitations caused by a water deficit during vegetative growth in strawberry.
期刊介绍:
The International Journal of Fruit Science disseminates results of current research that are immediately applicable to the grower, extension agent, and educator in a useful, legitimate, and scientific format. The focus of the journal is on new technologies and innovative approaches to the management and marketing of all types of fruits. It provides practical and fundamental information necessary for the superior growth and quality of fruit crops.
This journal examines fruit growing from a wide range of aspects, including:
-genetics and breeding
-pruning and training
-entomology, plant pathology, and weed science
-physiology and cultural practices
-marketing and economics
-fruit production, harvesting, and postharvest