流载结构特征频率的基准研究

IF 1.3 3区 物理与天体物理 Q3 ACOUSTICS
F. Kronowetter, S. K. Baydoun, M. Eser, Lennart Moheit, S. Marburg
{"title":"流载结构特征频率的基准研究","authors":"F. Kronowetter, S. K. Baydoun, M. Eser, Lennart Moheit, S. Marburg","doi":"10.1142/s2591728520500139","DOIUrl":null,"url":null,"abstract":"In this paper, a coupled finite/infinite element method is applied for computing eigenfrequencies of structures in exterior acoustic domains. The underlying quadratic eigenvalue problem is addressed by a contour integral method based on resolvent moments. The numerical framework is applied to an academic example of a hollow sphere submerged in water. Comparisons of the computed eigenfrequencies to those obtained by boundary element discretizations as well as finite element discretizations in conjunction with perfectly matched layers verify the proposed numerical framework. Furthermore, extensive parameter studies are carried out illustrating the performance of the method with regard to both projection and discretization parameters. Finally, we point out that the proposed method achieves significantly smaller residuals of the computed eigenpairs than the Rayleigh Ritz procedure with second-order Krylov subspaces.","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"23 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Benchmark Study on Eigenfrequencies of Fluid-Loaded Structures\",\"authors\":\"F. Kronowetter, S. K. Baydoun, M. Eser, Lennart Moheit, S. Marburg\",\"doi\":\"10.1142/s2591728520500139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a coupled finite/infinite element method is applied for computing eigenfrequencies of structures in exterior acoustic domains. The underlying quadratic eigenvalue problem is addressed by a contour integral method based on resolvent moments. The numerical framework is applied to an academic example of a hollow sphere submerged in water. Comparisons of the computed eigenfrequencies to those obtained by boundary element discretizations as well as finite element discretizations in conjunction with perfectly matched layers verify the proposed numerical framework. Furthermore, extensive parameter studies are carried out illustrating the performance of the method with regard to both projection and discretization parameters. Finally, we point out that the proposed method achieves significantly smaller residuals of the computed eigenpairs than the Rayleigh Ritz procedure with second-order Krylov subspaces.\",\"PeriodicalId\":55976,\"journal\":{\"name\":\"Journal of Theoretical and Computational Acoustics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Computational Acoustics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s2591728520500139\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2591728520500139","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

本文采用有限/无限元耦合法计算结构的外声域特征频率。利用基于可解矩的轮廓积分方法解决了潜在的二次特征值问题。将数值框架应用于一个空心球浸入水中的理论算例。将计算得到的特征频率与边界元离散以及结合完全匹配层的有限元离散得到的特征频率进行比较,验证了所提出的数值框架。此外,进行了广泛的参数研究,说明了该方法在投影和离散参数方面的性能。最后,我们指出,与二阶Krylov子空间的Rayleigh - Ritz方法相比,该方法得到的计算特征对的残差要小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Benchmark Study on Eigenfrequencies of Fluid-Loaded Structures
In this paper, a coupled finite/infinite element method is applied for computing eigenfrequencies of structures in exterior acoustic domains. The underlying quadratic eigenvalue problem is addressed by a contour integral method based on resolvent moments. The numerical framework is applied to an academic example of a hollow sphere submerged in water. Comparisons of the computed eigenfrequencies to those obtained by boundary element discretizations as well as finite element discretizations in conjunction with perfectly matched layers verify the proposed numerical framework. Furthermore, extensive parameter studies are carried out illustrating the performance of the method with regard to both projection and discretization parameters. Finally, we point out that the proposed method achieves significantly smaller residuals of the computed eigenpairs than the Rayleigh Ritz procedure with second-order Krylov subspaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical and Computational Acoustics
Journal of Theoretical and Computational Acoustics Computer Science-Computer Science Applications
CiteScore
2.90
自引率
42.10%
发文量
26
期刊介绍: The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信